
62 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 T
H

E
 I

M
A

G
E

 F
O

U
N

D
A

T
I

O
N

DESPITE THE FOCUS on operating in adversarial
environments, cryptocurrencies have suffered a litany
of security and privacy problems. Sometimes, these
issues are resolved without much fanfare following
a disclosure by the individual who found the hole. In
other cases, they result in costly losses due to theft,
exploits, unauthorized coin creation, and destruction.
These experiences provide regular fodder for
outrageous news headlines. In this article, we focus on
the disclosure process itself, which presents unique
challenges compared to other software projects.15 To
illustrate, we examine some recent disclosures and
discuss difficulties that have arisen.

While Bitcoin is the best known, more than 2,000
cryptocurrencies are in circulation, collectively
valued at $350 billion as of August 2020.6 Figure 1
conceptualizes the landscape as a stack. While the
details differ, at the lowest level, each cryptocurrency

system is designed to achieve common
security goals: transaction integrity and
availability in a highly distributed sys-
tem whose participants are incentiv-
ized to cooperate.38 Users interact with
the cryptocurrency system via software
“wallets” that manage the cryptograph-
ic keys associated with the coins of the
user. These wallets can reside on a local
client machine or be managed by an
online service provider. In these appli-
cations, authenticating users and
maintaining confidentiality of crypto-
graphic key material are the central se-
curity goals. Exchanges facilitate trade
between cryptocurrencies and between
cryptocurrencies and traditional forms
of money. Wallets broadcast cryptocur-
rency transactions to a network of
nodes, which then relay transactions to
miners, who in turn validate and group
them together into blocks that are ap-
pended to the blockchain.

Not all cryptocurrency applications
revolve around payments. Some crypto-
currencies, most notably Ethereum,
support “smart contracts” in which
general-purpose code can be executed
with integrity assurances and recorded
on the distributed ledger. An explosion
of token systems has appeared, in
which particular functionality is ex-
pressed and run on top of a cryptocur-
rency.12 Here, the promise is that busi-
ness logic can be specified in the smart
contract and confidently executed in a
distributed fashion.

The emergence of a vibrant ecosys-
tem of decentralized cryptocurrencies
has prompted proposals that leverage
the underlying technology to construct
new central bank currency2 and corpo-

Responsible
Vulnerability
Disclosure in
Cryptocurrencies

DOI:10.1145/3372115

Software weaknesses in cryptocurrencies
create unique challenges in responsible
revelations.

BY RAINER BÖHME, LISA ECKEY, TYLER MOORE,
NEHA NARULA, TIM RUFFING, AND AVIV ZOHAR

 key insights
	˽ Cryptocurrency software is complex

and vulnerabilities can be readily, and
anonymously, monetized.

	˽ Responsible vulnerability disclosure
in cryptocurrencies is hard because
decentralized systems, by design,
give no single party authority to push
code updates.

	˽ This review of case studies informs
recommendations for preventing
catastrophic cryptocurrency failures.

http://dx.doi.org/10.1145/3372115

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 63

64 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

ventions adopted for general software
products in several ways. Two funda-
mental differences arise from the very
nature of cryptocurrencies.

First, the decentralized nature of
cryptocurrencies, which must continu-
ously reach system-wide consensus on a
single history of valid transactions, de-
mands coordination among a large ma-
jority of the ecosystem. While an indi-
vidual can unilaterally decide whether
and how to apply patches to her client
software, the safe activation of a patch
that changes the rules for validating
transactions requires the participation
of a large majority of system clients. Ab-
sent coordination, users who apply
patches risk having their transactions
ignored by the unpatched majority.

Consequently, design decisions
such as which protocol to implement or
how to fix a vulnerability must get sup-
port from most stakeholders to take ef-
fect. Yet no developer or maintainer
naturally holds the role of coordinating
bug fixing, let alone commands the au-
thority to roll out updates against the
will of other participants. Instead,
loosely defined groups of maintainers
usually assume this role informally.

This coordination challenge is ag-
gravated by the fact that unlike “cre-
ative” competition often observed in
the open source community (for exam-
ple, Emacs versus vi), competition be-
tween cryptocurrency projects is often
hostile. Presumably, this can be ex-
plained by the direct and measurable
connection to the supporters’ financial
wealth and the often minor technical
differences between coins. The latter is
a result of widespread code reuse,28
which puts disclosers into the delicate
position of deciding which among
many competing projects to inform re-
sponsibly. Due to the lack of formally
defined roles and responsibilities, it is
moreover often difficult to identify who
to notify within each project. Further-
more, even once a disclosure is made,
one cannot assume the receiving side
will act responsibly: information about
vulnerabilities has reportedly been
used to attack competing projects,18 in-
fluence investors, and can even be used
by maintainers against their own users.

The second fundamental difference
emerges from the widespread design
goal of “code is law,” that is, making
code the final authority over the shared

rate electronic money, such as Face-
book’s asset-linked Libra. This article
focuses on existing decentralized cryp-
tocurrencies. Some lessons discussed
here could also inform the design and
operation of these prospective forms of
digital money issued by public or pri-
vate legal entities.

Bugs in cryptocurrencies. The crypto-
currency realm itself is a virtual “wild
west,” giving rise to myriad protocols
each facing a high risk of bugs. Projects
rely on complex distributed systems
with deep cryptographic tools, often
adopting protocols from the research
frontier that have not been widely vet-
ted. They are developed by individuals
with varying level of competence (from
enthusiastic amateurs to credentialed
experts), some of whom have not devel-
oped or managed production-quality
software before. Fierce competition be-
tween projects and companies in this
area spurs rapid development, which
often pushes developers to skip impor-
tant steps necessary to secure their co-
debase. Applications are complex as
they require the interaction between
multiple software components (for ex-
ample, wallets, exchanges, mining
pools). The high prevalence of bugs is
exacerbated by them being so readily
monetizable. With market capitaliza-
tions often measured in the billions of
dollars, exploits that steal coins are si-
multaneously lucrative to cybercrimi-
nals and damaging to users and other
stakeholders. Another dimension of
importance in cryptocurrencies is the
privacy of users, whose transaction data

is potentially viewable on shared led-
gers in the blockchain systems on
which they transact. Some cryptocur-
rencies employ advanced cryptograph-
ic techniques to protect user privacy,
but their added complexity often intro-
duces new flaws that threaten such pro-
tections.

Disclosures. Disclosures in crypto-
currencies have occurred in varying cir-
cumstances, from accidental discover-
ies, through analysis by expert
developers and academics, to observ-
ing successful exploits in the wild. In
the rest of this article, we highlight the
difficulties and subtleties that arise in
each case. The root causes of most of
the difficulties lie in the special nature
of cryptocurrencies: they are based on
distributed systems that were designed
to be difficult to change in order to pro-
vide strong guarantees on their future
behavior. In order to change these
rules, the consent of many participants
is needed—participants who are often
anonymous, and who are organized
loosely in communities without gov-
erning bodies or regulatory oversight.

Here, we briefly highlight the differ-
ences between conventional software
development and cryptocurrencies
with regard to vulnerability disclosure,
we identify key issues in the disclosure
process for cryptocurrency systems,
and we formulate recommendations
and pose open questions.

How Is Disclosure Different?
Responsible vulnerability disclosure in
cryptocurrencies differs from the con-

Figure 1. Components of the cryptocurrency architecture covered in this article.

User

Developer

MinerMiner Miner

Cryptocurrency systems

Smart contracts
e.g., Token systems

Client software
e.g., Wallets

Online wallets
And exchanges

Main security goals:

Key management
•
• Authentication

Business logic

• Integrity
• Authorization

• Integrity (Safety)
• Availability (Liveness)
• Incentives (Fairness)

Confidentiality

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 65

review articles

system state in order to avoid (presum-
ably fallible) human intervention. To
proponents, this approach should
eliminate ambiguity about intention,
but it inherently assumes bug-free
code. When bugs are inevitably found,
fixing them (or not) almost guarantees
at least someone will be unhappy with
the resolution. This is perhaps best ex-
emplified by the controversy around
the DAO, an Ethereum smart contract
with a reentrance bug that was exploit-
ed to steal coins worth around $50 mil-
lion. After a community vote, the Ethe-
reum developers rolled out a patch to
reverse the heist, which (maybe surpris-
ingly) turned out to be controversial.
While the patch was accepted by large
parts of the ecosystem, it was strongly
opposed by a minority of Ethereum us-
ers arguing that it is a direct violation of
the code-is-law principle, and the con-
troversy ultimately led to a split of the
Ethereum system into two distinct
cryptocurrencies Ethereum and Ethe-
reum Classic.1 Moreover, situations
may arise where it is impossible to fix a
bug without losing system state, possi-
bly resulting in the loss of users’ ac-
count balances and consequently their
coins. For example, if a weakness is dis-
covered that allows anybody to effi-
ciently compute private keys from data
published on the blockchain,16 recovery
becomes a race to move to new keys be-
cause the system can no longer tell au-
thorized users and attackers apart. This
is a particularly harmful consequence
of building a system on cryptography
without any safety net. The safer ap-
proach, taken by most commercial ap-
plications of cryptography but rejected
in cryptocurrencies, places a third party
in charge of resetting credentials or
suspending the use of known weak cre-
dentials.

Ironically, these fundamental differ-
ences stem from design decisions in-
tended to enhance security. Decentral-
ization is prized for eliminating single
points of control, which could turn out
to be single points of failure. Giving
code the final say is intended to pre-
serve the integrity of operations. How-
ever, what may benefit security at de-
sign time becomes a significant liability
after deployment once vulnerabilities
are found.

Besides these fundamental differ-
ences, responsible disclosure for cryp-

tocurrencies is characterized by specif-
ic features of the domain. The
interpretation of system state as mon-
ey, with many exchanges linking it me-
chanically to the conventional financial
system, makes it easier and faster to
monetize bugs than for conventional
software, where vulnerability markets
may exist but are known to be friction-
prone.23 Moreover, the cryptocurrency
ecosystem reflects conflicting world-
views, which prevent the establishment
of basic norms of acceptable behavior.
For example, invalidating ransomware
payments via blacklisting has reignited
the debate over censorship and the rule
of law.26

Finally, we note a difference in em-
phasis over certain aspects of disclo-
sure. The conventional responsible dis-
closure discussion has focused on
balancing users’ interests in defensive-
ly patching versus national security in-
terests of weaponizing vulnerabili-
ties,25,31 without regard to whether the
affected software is open or closed
source. By contrast, open source soft-
ware and code reuse are central to dis-
closure issues in cryptocurrencies,
whereas balancing national and indi-
vidual security considerations has so
far not been widely discussed.

Throughout the rest of the article,
we illustrate these differences with real
cases before we derive recommenda-
tions and point to open problems.

Case Studies
We now review selected case studies of
cryptocurrency vulnerability disclo-
sures, highlighting aspects that teach
us about the difficulties in response.
We employ a multi-perspective method
in selecting and researching these cas-
es, ranging from the authors’ direct ex-
perience as disclosers, interviews with
developers and cryptocurrency design-
ers, and through public reports. Inter-
views with open-ended questions were
conducted by telephone, in-person or
by email. Attribution is given unless the
subject requested anonymity. The nov-
elty and heterogeneity of the problem
precluded a more systematic approach,
though we hope that those informed by
our findings can do so in future investi-
gations. We investigate coins both
small and large, because even the top
coins have experienced severe bugs.
While the software development pro-

The decentralized
nature of
cryptocurrencies,
which must
continuously reach
system-wide
consensus on a
single history of
valid transactions,
demands
coordination among
a large majority
of the ecosystem.

66 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

Later in 2017, a team of researchers
including author Ruffing found anoth-
er vulnerability in Zcoin that allowed an
attacker to “burn” money in transit,
that is, ensure no one, including the
sender, recipient, and attacker, can fur-
ther spend the coins.30 Remarkably, the
root cause of this vulnerability was an
overlooked attack vector in the design
and security analysis of the underlying
Zerocoin protocol. While money burn-
ing does not serve the attacker directly,
the attacker could profit indirectly, for
example, by betting on falling prices of
the affected cryptocurrency (short sell-
ing) and then publishing or exploiting
the vulnerability. We have no evidence
that such short-selling activity did in-
deed take place.

Having no cryptographer on its
team, Zcoin hired Ruffing to provide
advice and develop a patch. During the
work, he identified two more vulnera-
bilities,29 one enabling illegitimate coin
generation and one allowing theft of
money in transit. Both vulnerabilities
stemmed from bugs in libzerocoin, a
prototype library written by the inven-
tors of the Zerocoin protocol for the
purpose of validating their research.
The Zcoin project had used that library
as-is, despite the code’s prominent
warning that the authors “are releasing
this dev version for the community to
examine, test and (probably) break”
and that there are things that they have
“inevitably done wrong.”21

Code reuse complicated the disclo-
sure process of the three vulnerabili-
ties.29 Months after the initial notifica-
tion, the discoverers found that more
than 1,600 public GitHub repositories
included verbatim copies of libze-
rocoin. Responsible and confidential
disclosure to so many recipients is in-
feasible. Instead, the discoverers nar-
rowed down the recipient set to less
than 10 actual cryptocurrency projects,
four of which they deemed trustworthy
enough to be informed additionally.
None of the projects had a clearly de-
fined contact point or process for han-
dling vulnerabilities.

Competition between projects pre-
vented a coordinated response. For ex-
ample, the notified project did not re-
veal to the reporters which of their
competitors were also vulnerable. Co-
ordination is essential because the first
project to patch reveals the vulnerabili-

cesses for prominent coins are more
robust, the cases will show that all coins
experience challenges to disclosure not
seen in traditional software projects.
Figure 2 presents a stylized timeline of
the cases presented.

Cryptocurrency systems. Zcoin. We
start with Zcoin, a relatively little
known cryptocurrency that has suf-
fered from repeated disclosures. Zcoin
was the first to implement the Zerocoin
protocol,22 which uses zero-knowledge
proofs to enable untraceable transac-
tions. In February 2017, an attacker ex-
ploited a typo in C++ code17 (using the
equality operator ‘==’ instead of the as-
signment operator ‘=’) to generate
403,050 coins out of thin air. The new
coins had a market value of $750,000
and inflated the currency supply in cir-

culation by 37%. In principle, such at-
tacks can remain unnoticed due to the
zero-knowledge veil, but the sheer
number of coins created combined
with the attacker’s impatience eventu-
ally led to its discovery. Within hours,
the Zcoin team demanded that trading
halt at big exchanges, published a blog
post, and asked mining pools to sus-
pend processing zero-knowledge
transactions. A patch was released
within a day, but the zero-knowledge
feature remained disabled, thereby
temporarily freezing all untraceable
funds. This issue was resolved after
four days when a “fork” altering the
fundamental transaction validation
rules was adopted by a majority of the
miners. Even so, the attacker was able
to abscond with the loot.

Figure 2. Visualization of the vulnerabilities discussed in this article.

The blue bars represent the underlying coins and
their widths are proportional to their marketcap (for
example, Coinmarketcap.org). The red bars visualize
the discussed incidents from their introduction (flag) to
their disclosure (wide bar) to their public announcement
(bell). The additional symbol is used whenever money
was stolen, burnt or printed.

Money printed B Money stolen B Money burned Public notification

2013 2014 2015 2016 2017 2018 2019 2020

network split

Bitcoin Cash

theft theft
shut

down

B B

IOTA

money burning (paper)

money printing and theft (libzerocoin)

2nd printing 3rd printing

Zcoin

Zcash

money printing (paper)

Ethereum

Smart contracts
The DAO

B

Parity wallet

B B

money printing

money burning* *
Monero

Bitcoin

network split introduced

discovered fixed

money printing

2013 2014 2015 2016 2017 2018 2019 2020

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 67

review articles

ty, leaving the others unprotected. One
currency was actually exploited in this
way, and ironically, Zcoin itself was tar-
geted because the patch was not adopt-
ed quickly enough. Dealing with the
entire situation required tact and judg-
ment by the discoverers, and the poten-
tial for every mistake to be catastrophic
furthers the discoverers’ burden.

As a result of the coin creation bugs,
Zcoin improved continuous monitor-
ing of aggregated balances, which led
to the discovery of another creation
bug in April 2019. The project repeated
the notification process described ear-
lier, disabled the zero-knowledge fea-
tures via an emergency fork, and in-
formed three potentially affected
competitors. It took 10 days of investi-
gation before a project developer iden-
tified the root cause in the design of the
Zerocoin protocol. Unlike a simple im-
plementation bug, there was no obvi-
ous way to fix the problem. The proj-
ect’s response was to migrate to an
entirely different zero-knowledge pro-
tocol, suspending untraceable transac-
tions in the meantime and freezing the
affected funds until the new protocol
was deployed in July 2019.37

Zcash. Zcash, the commercial imple-
mentation of the Zerocash protocol,3
improves on Zerocoin’s model for un-
traceable transactions. It too has suf-
fered from similar issues.32 The propos-
al for the used algorithm for generating
cryptographic material allowed a pa-
rameter to be published that should
have remained secret. (Incidentally, a
security proof was omitted because the
scheme was similar to a previous one
known to be secure.) The published
value could have been used to undetect-
ably generate coins out of thin air. The
problem was discovered internally in
March 2018 and fixed after 240 days in
conjunction with a scheduled upgrade
of the zero-knowledge protocol. Before
and during the events the Zcash team
had entered mutual disclosure agree-
ments with the two largest competitors
who reuse Zcash code. These competi-
tors were notified two weeks after the
fix with a schedule for public disclosure
within a maximum of 90 days, which
then took place in February 2019, al-
most one year after the discovery.32 Ob-
scurity played a key role in this event:
not only was the fix hidden in a larger
update, the critical parameter was also

removed from websites and a cover sto-
ry spun around the “loss” of this piece
of information. The intention of this
obscurity was to protect Zcash’s own in-
terests and its users, as well as those of
competing cryptocurrencies. On the
downside, such long periods of obscu-
rity may cast doubt on the trustworthi-
ness of security claims in the future,
and it remains unclear whether and to
what extent the bug has been exploited.

Monero. The opposite of internal
discovery is accidental public disclo-
sure. This happened to Monero, the
most popular implementation of the
CryptoNote protocol.35 In September
2018, an interested user posted a
seemingly innocuous question to an
online forum: “What happens if some-
body uses a one-time account twice?”
(paraphrased by the authors).7 Sur-
prisingly, there was no protection
against this action in the protocol.
The revealed vulnerability allowed at-
tackers to burn other people’s funds.
The problem was fixed within 10 days
without known incidents and publicly
announced thereafter.

A more serious vulnerability in the
CryptoNote protocol affected all crypto-
currencies based on it. A post on a spe-
cialized cryptography mailing list in
February 2017 revealed an issue, which
implied a coin generation vulnerability
in CryptoNote’s basic cryptographic
scheme.20 The Monero team took note
and developed a patch within three
days and shared it privately with pre-
ferred parties, such as mining pools
and exchanges. The true purpose of the
patch was disguised in order to protect
the rest of the users who were running
vulnerable clients. After a fork to the
validation rules that completely re-
solved the issue in Monero in April
2017, the Monero team informed other
CryptoNote coins privately. One such
coin, Bytecoin, was exploited immedi-
ately afterward, resulting in the illegiti-
mate generation of 693 million coins.18
In a public disclosure that took place 15
days later, the Monero team described
the aforementioned process and
named unpatched competitors, includ-
ing Bytecoin20 (though Bytecoin claims
that a patch had been issued to miners
immediately after the exploit18). Per-
versely, the public disclosure attracted
other investors to bid up the Bytecoin
price. Its market capitalization grew

Unlike bugs
in which
coins are created,
IOTA suffered
a vulnerability
that might have
placed user funds
at risk of theft.

68 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

ther bug could be exploited before
making the disclosure public on the
bitcoin-dev mailing list. They did not
notify anyone of the inflation bug until
the network had been upgraded. Third,
the disclosure involved deliberate de-
ception of users: the Bitcoin developers
published a patch describing it as only
fixing the denial-of-service issue. This
downplayed the severity of the bug,
while at the same time motivating a
prompt upgrade. This gave Bitcoin us-
ers and other affected cryptocurrencies
time to adopt the fix, albeit with grum-
bling about the sudden public release.
This highlights both a benefit and a
downside to employing white lies in the
disclosure process.

Silence is an alternative to white lies.
The Bitcoin team took this option after
an internal discovery in 2014. Bitcoin
suffered from an inconsistency be-
tween different versions of the OpenS-
SL library. The 32-bit version was more
tolerant in accepting variants of digital
signatures than the 64-bit version,
which could cause a loss of consistency
if a signature is accepted only by the
subset of nodes running on 32-bit. The
mitigation turned into a year-long or-
deal. Fixing OpenSSL was not an op-
tion, hence the stricter signature for-
mat had to be enforced in the Bitcoin
codebase. Changes were made subtly
and gradually in order to avoid drawing
attention on the relevant piece of code.
Users upgraded organically over a peri-
od of 10 months. The bug was made
public when more than 95% of the min-
ers had patched.36

Smart contracts. Some cryptocur-
rencies, most prominently Ethereum,
support “smart contracts.” These are
computer programs anyone can store
on a shared blockchain, which then
purports to guarantee correct execu-
tion. Contracts can receive, store, and
send coins to users or other contracts
according to their programmed logic.
Smart contracts pose two further chal-
lenges to disclosure and patching.
First, there is no club of miners whose
incentives are aligned with the func-
tioning of a specific contract. There-
fore, relying on miners as allies to sup-
port smooth disclosure is usually not
an option (though we will discuss an
exception). Second, the code is not up-
dateable by design to demonstrate
commitment to the rules of operation,

five-fold, briefly jumping into the top 10
cryptocurrencies by value. It remains
unclear who exploited the bug, but By-
tecoin holders certainly benefited from
the price rise.

IOTA. Unlike bugs in which coins are
created, IOTA suffered a vulnerability
that might have placed user funds at
risk of theft. Contrary to the best prac-
tice of using standardized cryptograph-
ic primitives, IOTA relied on a custom
hash function that had a collision
weakness.14 Author Narula and col-
leagues disclosed the vulnerability to
the developers in July 2017. The vulner-
ability was patched by IOTA in August
2017 and made public by the disclosers
in September 2017,13 offering several
lessons about the disclosure process.

First, the vulnerability was fixed and
deployed to the network quite quickly.
On one hand, this is good because the
potential vulnerability window is small-
er. On the other hand, the speedy re-
sponse was made possible due to the
project’s high level of control over the
network, which runs contrary to the de-
sign goals of decentralized cryptocur-
rencies. Such control further allowed
the operators to shut down its network
to prevent theft from a vulnerable wal-
let for several weeks in early 2020.

The second lesson is that organiza-
tions may not respond favorably to a
disclosure. Here, communications
were tense, the existence and risk of the
vulnerability was denied and down-
played, and the discoverers were threat-
ened with lawsuits. The response
echoes industry reactions to vulnerabil-
ity disclosures related to digital rights
management decades before.19 In the
cryptocurrency case, there is a clear po-
tential incentive conflict when the orga-
nization holds a large share of the coins
and reasonably worries that the news
could devalue holdings or prevent part-
nerships that might increase the value
of holdings. Moreover, information
about the bug could be exploited for
profit by those possessing inside infor-
mation about its existence prior to pub-
lic disclosure.

Bitcoin Cash. Not to be confused
with Bitcoin, “Bitcoin Cash” is derived
from Bitcoin’s codebase and was creat-
ed due to disagreements within the eco-
system. Cory Fields, a contributor to the
predominant implementation of Bit-
coin, Bitcoin Core, was examining

change-logs of Bitcoin Cash’s main im-
plementation in April 2018.10 There he
noticed that a sensitive piece of code
dealing with transaction validation had
been improperly refactored, causing a
vulnerability. It would allow an attacker
to split the Bitcoin Cash network, there-
by compromising the consistency re-
quired for a cryptocurrency to operate.

As Fields noted, bugs like this cause
systemic risk: if exploited, they could
sink a cryptocurrency. The large
amounts of money at risk prompt dis-
closers to take precautions. In this case,
to protect his own safety, Fields chose to
remain anonymous.10 The patching
went smoothly, but we do not know if it
would have been more contentious had
he revealed his identity. Moreover, dis-
coverers may want to demonstrate they
behaved ethically, for example, that
they sent a report to the developers. One
possible mechanism is to encrypt the
report with the developers’ public key
and publish the ciphertext and draw the
developer’s attention to it. This would
require developers to provide public
keys along with their security contact
and have internal processes to handle
incoming messages. Surprisingly, at the
time Bitcoin Cash, a top-10 cryptocur-
rency worth billions of dollars, did not
(though now they do). In our interview,
Fields stressed he found it difficult to
figure out what was the right thing to do.
What helped him was to imagine the
situation with swapped roles.

Bitcoin. A few months later, a devel-
oper from Bitcoin Cash disclosed a bug
to Bitcoin (and other projects) anony-
mously. Prior to the Bitcoin Cash
schism, an efficiency optimization in
the Bitcoin codebase mistakenly
dropped a necessary check. There were
actually two issues: a denial-of-service
bug and potential money creation.8 It
was propagated into numerous crypto-
currencies and resided there for al-
most two years but was never exploited
in Bitcoin.

This case teaches us three lessons:
First, even the most watched cryptocur-
rencies are not exempt from critical
bugs. Second, not all cases should be
communicated to everyone in the net-
work at the same time. The Bitcoin de-
velopers notified the miners control-
ling the majority of Bitcoin’s hashrate
of the denial-of-service bug first, mak-
ing sure they had upgraded so that nei-

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 69

review articles

hence the contract analogy. This may
turn disastrous if the code contains
bugs because machines, unlike arbitra-
tors of real contracts, have no room for
interpretation.

The DAO. The most famous example
of a buggy contract is the DAO (short for
Decentralized Autonomous Organiza-
tion), the first code-controlled venture
fund. Widely endorsed by an enthusias-
tic Ethereum community, in spring
2016 the DAO project collected user
funds and stored them in a smart con-
tract. Its visible balance of $250 million
(15% of all available coins at the time)
made it a highly attractive target. It
prompted scrutiny from security re-
searchers who raised concerns,9 the
closest activity to disclosure in the
smart contract space we have seen.
Three weeks later, an anonymous at-
tacker managed to withdraw more than
3.5 million coins (about $50 million) il-
legitimately from the DAO smart con-
tract.1 The attacker’s trick involved
making a small investment in the DAO,
then withdrawing and thereby exploit-
ing a re-entrance vulnerability in the
refund mechanism. (The contract’s
bug was to not decrease the balance be-
fore sending coins, which in Ethereum
passes control to the receiving party.)
This exploit set off a vigorous debate
over whether or not this behavior was
abusive, since the code technically al-
lowed the interaction.

The DAO incident could have been
an example of an irreversible change of
system state. However, the exceptional
scale of the project and the involvement
of the Ethereum community triggered a
historic vote between miners to sup-
port a fork of the underlying cryptocur-
rency in order to “restore” the invest-
ments in the DAO contract. This
intervention was highly controversial
as it thwarted the very idea of immuta-
ble transactions, causing a group of
purists to create a parallel instance,
called Ethereum Classic, that was not
rolled back. In hindsight, the incident
raised the alarm to the smart contract
community about the looming security
issues. Today’s contracts cannot hope
for miner-enforced rollbacks because
the uptake of the platform has diversi-
fied interests.

Parity wallet. Another example of a
fund recovery, albeit partially success-
ful, followed the Parity exploit in July

2017. The vulnerable contract imple-
mented a multi-signature wallet, a
mechanism that promises superior
protection against theft compared to
standard wallets. Intended uses in-
clude “corporate” accounts storing
high value, such as the proceeds from
initial coin offerings (ICOs). An anony-
mous attacker observed a discrepancy
between the published and reviewed
source code and the binary code, which
was deployed for each of 573 wallets
and omitted an essential access control
step. This enabled a theft of coins worth
$30 million from three accounts. Parity
discovered the attack as it was ongoing
and published an alert. This would
have enabled attentive users to rescue
their funds (exploiting the same vulner-
ability) in a race against the attacker
and imitators. At this point, a total of
another $150 million was essentially
free to be picked up by anyone.33 As ex-
pected, many users reacted slowly and
found their funds missing. It turned
out that a group of civic-minded indi-
viduals has taken the funds in custody
in order to protect users and return
them in a safe way. This example raises
the question if protective appropriation
of funds is legal or should even be ex-
pected from discoverers.

Users who nevertheless continued
to trust the Parity wallet software were
less lucky following a second incident.
The Ethereum platform has a fuse
mechanism that irrevocably disables
code at a given address. In November
2017, a user (allegedly) inadvertently in-
voked this mechanism on a library ref-
erenced in 584 intentionally non-up-
datable contracts of the next-generation
Parity wallet. A total of $152 million was
burned.34 This time, no one intervened,
presumably because the loss concerned
only 0.5% of all coins.

We close by noting that as of this
writing, we are not aware of any major

cases of responsible disclosures of vul-
nerabilities in smart contracts.

Recommendations
and Open Questions
While best practices in secure software
engineering and responsible disclo-
sure15 are increasingly adopted in the
cryptocurrency space, there always re-
mains a residual risk of damaging vul-
nerabilities. Therefore, norms and
eventually laws for responsible disclo-
sure must emerge. What follows is a
first step toward that end. Our synthesis
of what can be learned from the cases is
structured along three central issues of
responsible disclosure: how to protect
users, who to contact, when and how;
and, how to reward the discoverer. The
accompanying table sums up the rec-
ommendations outlined in this section.

How to protect users. Discoverer
safety. If the vulnerability can make
parties who may operate beyond the
law substantially richer or poorer, the
discoverer’s personal safety should be
considered.10 Death threats are not un-
heard of. Confidentially sharing the
vulnerability with others the discoverer
trusts (professional colleagues, nota-
ries or the police) might reduce this
risk. Sealed envelopes, or their digital
variants such as time-locked encryp-
tion or secret sharing schemes, lessen
the risk of unintended leakage. In addi-
tion, anonymous reporting may also
reduce stress and tension. However,
note that if the vulnerability is exploit-
ed, any proof the discloser knew of the
vulnerability before its exploit could be
used as evidence the discloser was the
attacker.

Addressing vulnerable funds. If a vul-
nerability means that anyone can steal
money from an account, should civic-
minded defenders proactively steal to
protect funds, like in the Parity wallet
case? This touches on unresolved legal

Synthesis of recommendations.

Dos Provide point of contact including public key
Liaise with competitors who share code

Don'ts Single out vulnerable competitors
Bug bounties in your own coin

Depends
Use obscurity and white lies during disclosure
Notify all affected projects unless there is conflict
Built-in notification and feature “kill” switches

Need for action Clarify right or obligation to preventively move vulnerable funds
Establish clearinghouse and coordinator

70 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

review articles

transport of stolen funds. In other in-
stances, wallet developers must be noti-
fied first, in order to deploy patches to
their software. It is good practice to
publish an advisory detailing the course
of events and clarify any obfuscation or
lies after the risk is mitigated. This
transparency could mitigate the ero-
sion of trust resulting from deception.

Coordination among multiple re-
sponders. As illustrated in the cases ex-
plored here, vulnerabilities often affect
multiple projects. It is up to the discov-
erer to decide where to send the report.
The reporter should be transparent
about who has been informed. The dis-
coverer can work with the responders
to ensure that everyone affected has
been notified. Coordination among re-
sponders is essential. Patches should
be deployed as simultaneously as pos-
sible across affected projects, since the
patching and publication of vulnerabil-
ity information would leave others ex-
posed if no precautions were taken. In
some circumstances, the responders
are competitors, and their attitudes to-
ward one another range from suspicion
to hostility.

Dealing with untrustworthy respond-
ers. While in the traditional security
world, it is considered not only com-
mon courtesy but professionally and
ethically required to inform other proj-
ects about vulnerabilities before dis-
closing their existence publicly. In the
cryptocurrency world, one must adopt a
more adversarial mindset. If the discov-
erer does not find a trustworthy re-
sponder, she can take on that responsi-
bility. While one might not expect the
discoverer to fix the bug, she could
nonetheless take steps to protect users.

The situation is further complicated
when multiple projects share a prob-
lem, and some are not trustworthy or
are hostile toward each other. It is un-
reasonably burdensome for a discover-
er to adjudicate such conflicts. Re-
sponders can make a best effort to
identify affected parties (for example,
searching for coins sharing common
codebases) and notify accordingly. This
points to the need for developing a
clearinghouse, à la CERT/CC.

External authorities. Banks, payment
processors, and other key financial in-
stitutions are often required to report
vulnerabilities to banking regulators,
who can coordinate the response if

questions. If “code is law” is the guid-
ing principle, moving vulnerable funds
must be legal. But courts are bound to
real-world norms which differ across
jurisdictions and circumstances. For
example, in many places only law en-
forcement can legally expropriate prop-
erty, including crypto coins. Elsewhere,
disclosers could be obligated to inter-
vene rather than stand by and allow a
crime to take place. To give the discov-
erer legal certainty, it is essential to set-
tle the basic question whether the dis-
coverer could face legal consequences
if she takes such precautions or break
the law if she has the power and does
not. If opting to leave the matter to law
enforcement, other complications
arise: Which law enforcement agency
has jurisdiction and sufficient authori-
ty and is allowed to act? Do all law en-
forcement agencies possess the techni-
cal capability to intervene in time?

Preparing the system for disclosure.
Given the inevitability of vulnerabili-
ties, one strategy is to implement fea-
tures in the cryptocurrency itself to au-
tomatically notify affected users of
significant problems. In fact, Bitcoin
used to have such an alert system,
which enabled trusted actors to dis-
seminate messages to all users and
even suspend transactions. Such alert
systems prompt difficult questions of
their own, like who can be trusted with
that authority in a decentralized sys-
tem? Also, the alert system itself could
become the target of attack, in much
the same way that an Internet “kill
switch” could create more security
problems than it solves. Incidentally,
Bitcoin itself abandoned the alert sys-
tem over such concerns.4 A similar idea
is to incorporate a mechanism to turn
off particular features if significant vul-
nerabilities are later found. Dash utiliz-
es such a system that lets the holder of a
secret key turn features on and off at
will.27 PIVX supports a similar mecha-
nism to disable zero-knowledge trans-
actions, which proved useful during the
Zerocoin disasters.

Despite the benefits such features
bring, they contradict the design phi-
losophy of decentralization and might
expose the privileged party to law en-
forcement requests. Supposing a cryp-
tocurrency could overcome these chal-
lenges and develop mechanisms for
disseminating protective instructions,

the question of how to contact the
trusted party who takes the precaution
remains.

Who to contact, when, and how. Pro-
vide clear points of contact. Many crypto-
currencies are designed to avoid relying
on privileged parties with substantial
control. Yet this is in effect required to
support responsible disclosure. It can
be difficult to determine who is “in
charge” (assuming anyone is) and who
can fix the bug. Best practices recom-
mend that developers provide clear
points of contact for reporting security
bugs, including long-term public keys.11
Developers who reuse code are advised
to publish alongside their own contact
information that of the original code to
aid the search for affected projects.

Identifying the responder. All commu-
nication by the discoverer should serve
the end of fixing the bug. This means
the discoverer must notify the party
who is in the best position to solve the
problem. For example, if the vulnerabil-
ity affects the cryptocurrency’s core im-
plementation, then the developers are
the natural responders. There is a long
history of bugs in exchanges,24 in which
case they would respond. It is impor-
tant to note that once the responder
has taken responsibility, the discoverer
should adopt a “need-to-know” prac-
tice until the risk is mitigated. Some-
times the natural choice for responder
is missing or untrustworthy. In this
case, the discoverer can also serve as re-
sponder, or delegate the responsibility
to a third party.

Responder communication with stake-
holders. Given the decentralized nature
of cryptocurrencies, the responder is
usually not in a position to unilaterally
act to fix the bug. Instead, the respond-
er must seek stakeholders’ support.
This means communicating the right
messages at the right time. It could be
dangerous to tell the full truth right
away, so the message may justifiably in-
clude obfuscation or even white lies.
Different stakeholders might require
varying levels of detail at particular
points in time. For bugs that require
certain transactions to be mined for
successful exploitation, the responder
might encourage miners to upgrade
first in order to deploy a fix as fast as
possible. Exchanges can suspend trad-
ing in order to limit price shocks as bad
news breaks, or aid in blocking the

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 71

review articles

needed. There is no current equivalent
for cryptocurrencies, and it is unclear
under which jurisdiction such a thing
would reside. Should some global re-
porting agency of this nature be
formed? If so, how might it successfully
operate given a community whose com-
mon ground is removing the need for
central parties? An external body mod-
eled on CERT/CC might serve as a use-
ful starting point. A less formal and
more decentralized example to consid-
er is iamthecalvary.org, an initiative
bringing together security researchers
with medical device manufacturers to
promote responsible vulnerability dis-
closure and remediation.

How to reward the discoverer. The
article has shown that disclosing a cryp-
tocurrency vulnerability and reacting
responsibly is very burdensome. Inter-
viewees have reported sleepless nights
and fears for their safety, which in turn
has altered their professional collabo-
rations and friendships. The alterna-
tive to profit from the vulnerability, po-
tentially anonymously, is tempting.
This is why cryptocurrencies specifical-
ly cannot expect altruistic behavior and
must instead incentivize responsible
disclosure.11

Bug bounties offer an established
way to reward those who find bugs.5 It
stands to reason they would be a natu-
ral fit for cryptocurrencies, given they
have a built-in payment mechanism.
However, denominating the reward in
its own currency is problematic, since
its value might diminish as a result of
disclosing the vulnerability, and you
are effectively rewarding the discloser
in a currency which she just found to be
buggy. Other approaches are possible—
for example, Augur (a smart contract
market platform) is experimenting
with exploit derivatives. It is not unrea-
sonable to think that the cryptocurren-
cy community might innovate a solu-
tion that could be a model for the
broader software community. Never-
theless, monetary rewards must com-
plement and cannot substitute for
healthy norms and a culture that wel-
comes vulnerability disclosure.

Acknowledgments. This article is a
result of a breakout group at the Dag-
stuhl Seminar 18461, “Blockchain Se-
curity at Scale.” The authors thank C.
Fields, M. Fröwis, P. van Oorschot, and
their interview partners.

This work is partially funded by: Ar-
chimedes Privatstiftung, Innsbruck,
U.S. National Science Foundation
Award No.~ 1714291, ISF grant 1504/17,
HUJI Cyber Security Research Center
Grant, DFG grants FA 1320/1-1 (Emmy
Noether Program) and SFB 1119—
236615297 (Crossing), and BMBF grant
16KIS0902 (iBlockchain).	

References
1.	 Atzei, N., Bartoletti, M. and Cimoli, T. A survey of

attacks on Ethereum smart contracts. In Proceedings
of the Principles of Security and Trust. M. Maffei and M.
Ryan, Eds. LNCS 10204 (2017), Springer, 164–186.

2.	 Bech, M. and Garratt, R. Central bank
cryptocurrencies. BIS Quarterly Rev. 9 (2017), 55–70.

3.	 Ben-Sasson, E., Chiesa, A., Garman, C., Green, M.,
Miers, I. and Virza, M. Zerocash: Decentralized
anonymous payments from Bitcoin. In Proceedings of
the IEEE Symp. on Security and Privacy, 2014.

4.	 Bishop, B. Alert key disclosure. Bitcoin development
mailing list; https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2018-July/ 016189.html.

5.	 Böhme, R. A comparison of market approaches to
software vulnerability disclosure. Emerging Trends
in Information and Communication Security. G.
Müller, Ed. LNCS 3995 (2006). Springer, Berlin
Heidelberg, 298–311.

6.	 CoinMarketCap. Global charts, 2019;
https://coinmarketcap.com/charts/.

7.	 dEBRUYNE. A post mortem of the Burning Bug,
2018; https://web.getmonero.org/2018/09/25/a-post-
mortum-of-the-burning-bug.html.

8.	 Bitcoin Core Developers. CVE-2018-17144 Full
Disclosure; https://bitcoincore.org/en/2018/09/20/
notice/.

9.	 Dino, M., Zamfir, V. and Sirer, G.E. A call for a
temporary moratorium on the DAO. Blog post;
http://hackingdistributed.com/ 2016/05/27/
dao-call-for-moratorium/.

10.	 Fields, C. Responsible disclosure in the era of
cryptocurrencies. Blog post, 2018; https://bit.ly/3cgSdYs

11.	 Fields, C. and Narula, N. Reducing the risk of
catastrophic cryptocurrency bugs. Blog post, 2018;
https://bit.ly/2SKbd9Y.

12.	 Fröwis, M., Fuchs, A. and Böhme, R. Detecting token
systems on Ethereum. In Proceedings of the Financial
Cryptography and Data Security. I. Goldberg and T.
Moore, Eds. 2019.

13.	 Heilman, E., Narula, N., Dryja, T. and Virza, M.
IOTA vulnerability report: Cryptanalysis of the curl
hash function enabling practical signature forgery
attacks on the IOTA cryptocurrency, 2017; https://
github.com/mit-dci/tangled-curl/blob/master/
vuln-iota.md.

14.	 Heilman, E., Narula, N., Tanzer, G., Lovejoy, J., Colavita,
M., Virza, M. and Dryja, T. Cryptanalysis of curl-p and
other attacks on the IOTA cryptocurrency. IACR
Cryptology ePrint archive report 2019/344; https://
eprint.iacr.org/2019/344.

15.	 Householder, A., Wassermann, G., Manion, A. and
King, C. The CERT Guide to Coordinated Vulnerability
Disclosure. Special Report CMU/SEI-2017-SR-022.

16.	 Hutchinson, L. All Android-created Bitcoin wallets
vulnerable to theft. Ars Technica, 2018; https://bit.
ly/2SMHiy5 /.

17.	 Insom, P. Zcoin’s Zerocoin bug explained in detail.
Blog post, 2017; https://zcoin.io/zcoins-zerocoin-bug-
explained-in-detail/.

18.	 Juarez, A.M. Fraudulent transactions allowed by the
CryptoNote key image bug remain valid. Archived
version of Bytecoin GitHub; https://bit.ly/2WbYkrn.

19.	 Lok, C. Dispute over digital music muzzles academic.
Nature 411, 6833 (2001), 5.

20.	 luigi1111 and Riccardo “fluffypony” Spagni. Disclosure
of a major bug in CryptoNote based currencies. Blog
post, 2017; https://bit.ly/2xHiTmb.

21.	 Miers, I. README of libzerocoin, 2013; https://bit.
ly/2L94ORJ.

22.	 Miers, I., Garman, C., Green, M. and Rubin, A.
Zerocoin: Anonymous distributed e-cash from
Bitcoin. In Proceedings of the 2013 IEEE Symp. on
Security and Privacy.

23.	 Miller, D. The legitimate vulnerability market:
Inside the secretive world of 0-day exploit sales. In

Proceedings of the Workshop on the Economics of
Information Security. Carnegie Mellon University,
Pittsburgh, PA, 2007.

24.	Moore, T., Christin, N. and Szurdi, J. Revisiting
the risks of Bitcoin currency exchange closure.
ACM Trans. Internet Technology 18, 4 (2018),
50:1–50:18.

25.	 Moore, T., Friedman, A. and Procaccia, A. Would
a ’cyber warrior’ protect us: Exploring trade-offs
between attack and defense of information systems.
In Proceedings of the New Security Paradigms
Workshop. A.D. Keromytis, S. Peisert, R. Ford and C.
Gates, Eds. ACM, 2010, 85–94; https://tylermoore.
utulsa.edu/nspw10.pdf

26.	 Möser, M. and Narayanan, A. Effective cryptocurrency
regulation through blacklisting, 2019; https://
maltemoeser.de/paper/blacklisting-regulation.pdf.

27.	 Multi-Phased Fork. Glossary item in developer
documentation. Dash project, 2017; https://dash-docs.
github.io/en/glossary/spork.

28.	 Reibel, P., Yousaf, H. and Meiklejohn, S. An exploration
of code diversity in the cryptocurrency landscape. In
Proceedings of the 2019 Financial Cryptography and
Data Security Conf. I. Goldberg and T. Moore, eds.

29.	 Ruffing, T., Thyagarajan, S., Ronge, V. and Schröder,
D. A cryptographic flaw in Zerocoin (and two critical
coding issues). Blog post, 2018; https://bit.ly/2WAib2B

30.	 Ruffing, T., Thyagarajan, S., Ronge, V. and Schröder,
D. (Short Paper) Burning Zerocoins for fun and for
profit—A cryptographic denial-of-spending attack
on the Zerocoin protocol. In Proceedings of the
Crypto Valley Conf. on Blockchain Technology, (Zug,
Switzerland, June 20–22, 2018). IEEE, 116–119;
https://doi.org/10.1109/CVCBT.2018.00023

31.	 Schwartz, A. and Knake, R. Government’s Role in
Vulnerability Disclosure. Harvard Kennedy School
discussion paper, 2016.

32.	 Swihart, J., Winston, B., and Bowe, S. Zcash
counterfeiting vulnerability successfully remediated.
Blog post, 2019; https://bit.ly/2YDO790/.

33.	 Parity Technologies. The multi-sig hack: A
postmortem, 2017; https://www.parity.io/the-multi-
sig-hack-a-postmortem/.

34.	 Parity Technologies. A postmortem on the parity
multi-sig library self-destruct, 2017; https://www.
parity.io/ a-postmortem-on-the-parity-multi-sig-
library-self-destruct/.

35.	 van Saberhagen, N. CryptoNote v 2.0. White Paper,
2013; https://cryptonote.org/whitepaper.pdf.

36.	 Wuille, P. Disclosure: Consensus bug indirectly solved
by BIP66. Bitcoin development mailing list, 2015;
https://bit.ly/2zeC5rX.

37.	 Yap, R. Further disclosure on Zerocoin vulnerability.
Blog post, 2019; https://zcoin.io/further-disclosure-on-
zerocoin-vulnerability/.

38.	 Zohar, A. Bitcoin: Under the hood. Commun. ACM 58, 9
(Sept. 2015), 104–113.

Rainer Böhme (rainer.boehme@uibk.ac.at) is a professor
of computer science at Universität Innsbruck, Austria.

Lisa Eckey (lisa.eckey@tu-darmstadt.de) is a
cryptographer at TU Darmstadt, Germany.

Tyler Moore (tyler-moore@utulsa.edu) is the Tandy
Professor of Cyber Security and Information Assurance at
The University of Tulsa, OK, USA.

Neha Narula (narula@mit.edu) is Director, Digital
Currency Initiative, MIT, Cambridge, MA, USA.

Tim Ruffing (crypto@timruffing.de) is a cryptographer at
Blockstream.

Aviv Zohar (avivz@cs.huji.ac.il) is an associate professor
of computer science at Hebrew University Jerusalem,
Israel.

Copyright held by authors/owners.
Publications rights licensed to ACM.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
vulnerability-disclosure

