
Divide-Conquer-Glue

Tyler Moore

CSE 3353, SMU, Dallas, TX

February 19, 2013

Portions of these slides have been adapted from the slides written by Prof. Steven Skiena at SUNY Stony Brook, author

of Algorithm Design Manual. For more information see http://www.cs.sunysb.edu/~skiena/

Divide-Conquer-Glue Algorithm Strategy

The main programming paradigm you’ve learned iterates through
problems: given a problem of size n, split it up into subproblems of
size 1 and n − 1

How did you do this in Q1 of HW1 (say for exhaustive search job
selection)?

Rather than bite off one very small piece at a time for processing,
with divide-and-conquer, you repeatedly divide the problem in half
until it is manageable

You’ve already encountered this paradigm in Mergesort

By dividing tasks evenly, we can often solve tasks in logarithmic time,
rather than linear (or log-linear instead of quadratic)

2 / 21

Skyline Problem as an Example of Divide-Conquer-Glue

We can incrementally add buildings to a skyline in linear time

Thus, to build a complete skyline, we can do so in quadratic time

But is there a better way? Can’t we also merge two existing skylines
into a combined skyline for the same cost of adding one building to a
skyline?

3 / 21

Canonical Divide-Conquer-Glue Algorithm

def d i v i d e a n d c o n q u e r (S , d i v i d e , g l u e) :
i f l e n (S) == 1 : return S
L , R = d i v i d e (S)
A = d i v i d e a n d c o n q u e r (L , d i v i d e , g l u e)
B = d i v i d e a n d c o n q u e r (R , d i v i d e , g l u e)
return g l u e (A, B)

4 / 21

Notes

Notes

Notes

Notes

http://www.cs.sunysb.edu/~skiena/

Before we get to Mergesort

Let’s talk through a simpler algorithm that employs
divide-conquer-glue

Selection Problem: find the kth smallest number of an unsorted
sequence.

What is the name for selection when k = n
2?

Median

Θ(n lg n) solution is easy. How?

Sort in Θ(n lg n) time, then extract
the kth element

There is a linear-time solution available in the average case

5 / 21

Partitioning with pivots

To use a divide-conquer-glue strategy, we need a way to split the
problem in half

Furthermore, to make the running time linear, we need to always
identify the half of the problem where the kth element is

Key insight: split the sequence by a random pivot. If the subset of
smaller items happens to be of size k − 1, then you have found the
pivot. Otherwise, pivot on the half known to have k.

6 / 21

Partition and Select

1 def p a r t i t i o n (seq) :
2 pi , seq = seq [0] , seq [1 :] # Pick and remove the p i v o t
3 l o = [x f o r x i n seq i f x <= p i] # A l l the sma l l e l ement s
4 h i = [x f o r x i n seq i f x > p i] # A l l the l a r g e ones
5 return l o , p i , h i # p i i s ” i n the r i g h t p l a c e ”
6

7 def s e l e c t (seq , k) :
8 l o , p i , h i = p a r t i t i o n (seq) # [<= p i] , p i , [> p i]
9 m = l e n (l o)

10 i f m == k : return p i # Found kth sm a l l e s t
11 e l i f m < k : # Too f a r to the l e f t
12 return s e l e c t (h i , k−m−1) # Remember to a d j u s t k
13 e l s e : # Too f a r to the r i g h t
14 return s e l e c t (lo , k) # Use o r i g i n a l k he r e

7 / 21

A verbose Select function

def s e l e c t (seq , k) :
lo , p i , h i = p a r t i t i o n (seq) # [<= p i] , p i , [> p i]
p r i n t l o , p i , h i
m = l e n (l o)
p r i n t ’ sma l l p a r t i t i o n l e n g t h %i ’ %(m)
i f m == k :

p r i n t ’ found kth sm a l l e s t %s ’ % p i
r e t u r n p i # Found kth sma l l e s t

e l i f m < k : # Too f a r to the l e f t
p r i n t ’ sma l l p a r t i t i o n has %i e lements , so kth must be i n r i g h t sequence ’ % m
r e t u r n s e l e c t (h i , k−m−1) # Remember to a d j u s t k

e l s e : # Too f a r to the r i g h t
p r i n t ’ sma l l p a r t i t i o n has %i e lements , so kth must be i n l e f t sequence ’ % m
r e t u r n s e l e c t (lo , k) # Use o r i g i n a l k he r e

8 / 21

Notes

Notes

Notes

Notes

Seeing the Select in action

>>> select([3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2],4)

[1, 3, 0, 1, 2, 2, 3, 3, 2] 3 [4, 6, 7, 9, 13, 93, 100]

small partition length 9

small partition has 9 elements, so kth must be in left sequence

[0, 1] 1 [3, 2, 2, 3, 3, 2]

small partition length 2

small partition has 2 elements, so kth must be in right sequence

[2, 2, 3, 3, 2] 3 []

small partition length 5

small partition has 5 elements, so kth must be in left sequence

[2, 2] 2 [3, 3]

small partition length 2

small partition has 2 elements, so kth must be in left sequence

[2] 2 []

small partition length 1

found kth smallest 2

2 9 / 21

From Quickselect to Quicksort

Question: what if we wanted to know all k-smallest items (for
k = 1→ n)?

1 def q u i c k s o r t (seq) :
2 i f l e n (seq) <= 1 : return seq # Base ca se
3 l o , p i , h i = p a r t i t i o n (seq) # p i i s i n i t s p l a c e
4 return q u i c k s o r t (l o) + [p i] + q u i c k s o r t (h i) # Sor t l o and h i s e p a r a t e l y

10 / 21

Best case for Quicksort

The total partitioning on each level is O(n), and it take lg n levels of
perfect partitions to get to single element subproblems. When we are
down to single elements, the problems are sorted. Thus the total time in
the best case is O(n lg n).

11 / 21

Worst case for Quicksort

Suppose instead our pivot element splits the array as unequally as possible.
Thus instead of n/2 elements in the smaller half, we get zero, meaning
that the pivot element is the biggest or smallest element in the array.

Now we have n1 levels, instead of lg n, for a worst case time of Θ(n2),
since the first n/2 levels each have ≥ n/2 elements to partition.

12 / 21

Notes

Notes

Notes

Notes

Picking Better Pivots

Having the worst case occur when they are sorted or almost sorted is
very bad, since that is likely to be the case in certain applications. To
eliminate this problem, pick a better pivot:

1 Use the middle element of the subarray as pivot.
2 Use a random element of the array as the pivot.
3 Perhaps best of all, take the median of three elements (first, last,

middle) as the pivot. Why should we use median instead of the mean?

Whichever of these three rules we use, the worst case remains O(n2).

13 / 21

Randomized Quicksort

Suppose you are writing a sorting program, to run on data given to
you by your worst enemy. Quicksort is good on average, but bad on
certain worst-case instances.

If you used Quicksort, what kind of data would your enemy give you
to run it on? Exactly the worst-case instance, to make you look bad.

But instead of picking the median of three or the first element as
pivot, suppose you picked the pivot element at random.

Now your enemy cannot design a worst-case instance to give to you,
because no matter which data they give you, you would have the
same probability of picking a good pivot!

14 / 21

Randomized Guarantees

Randomization is a very important and useful idea. By either picking
a random pivot or scrambling the permutation before sorting it, we
can say: “With high probability, randomized quicksort runs in
Θ(n lg n) time”

Where before, all we could say is: “If you give me random input data,
quicksort runs in expected Θ(n lg n) time.”

See the difference?

15 / 21

Importance of Randomization

Since the time bound how does not depend upon your input
distribution, this means that unless we are extremely unlucky (as
opposed to ill prepared or unpopular) we will certainly get good
performance.

Randomization is a general tool to improve algorithms with bad
worst-case but good average-case complexity.

The worst-case is still there, but we almost certainly wont see it.

16 / 21

Notes

Notes

Notes

Notes

Canonical Divide-Conquer-Glue Algorithm

def d i v i d e a n d c o n q u e r (S , d i v i d e , g l u e) :
i f l e n (S) == 1 : return S
L , R = d i v i d e (S)
A = d i v i d e a n d c o n q u e r (L , d i v i d e , g l u e)
B = d i v i d e a n d c o n q u e r (R , d i v i d e , g l u e)
return g l u e (A, B)

17 / 21

Mergesort

1 def merge so r t (seq) :
2 mid = l e n (seq)/2 #Midpo int f o r d i v i s i o n
3 l f t , r g t = seq [: mid] , seq [mid :]
4 i f l e n (l f t) > 1 : l f t = merge so r t (l f t)#Sor t by h a l v e s
5 i f l e n (r g t) > 1 : r g t = merge so r t (r g t)
6 r e s = [] #Merge s o r t e d h a l v e s
7 wh i l e l f t and r g t : #Ne i t h e r h a l f i s empty
8 i f l f t [−1] >= rg t [−1] : #l f t has g r e a t e s t l a s t v a l u e
9 r e s . append (l f t . pop ()) #Append i t

10 e l s e : #rg t has g r e a t e s t l a s t v a l u e
11 r e s . append (r g t . pop ()) #Append i t
12 r e s . r e v e r s e () #Resu l t i s backward
13 r e t u r n (l f t or r g t) + r e s #Also add the r ema inde r

18 / 21

Mergesort

19 / 21

Merging Sorted Lists

The efficiency of mergesort depends upon how efficiently we combine
the two sorted halves into a single sorted list.

This smallest element can be removed, leaving two sorted lists
behind, one slightly shorter than before.

Repeating this operation until both lists are empty merges two sorted
lists (with a total of n elements between them) into one, using at
most n1 comparisons or O(n) total work

Example: A = 5, 7, 12, 19 and B = 4, 6, 13, 15.

20 / 21

Notes

Notes

Notes

Notes

External Sorting

Which O(n log n) algorithm you use for sorting doesnt matter much
until n is so big the data does not fit in memory.

Mergesort proves to be the basis for the most efficient external
sorting programs.

Disks are much slower than main memory, and benefit from algorithms
that read and write data in long streams – not random access.

21 / 21

Notes

Notes

Notes

Notes

