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Edit distance

Misspellings make approximate pattern matching an important
problem

If we are to deal with inexact string matching, we must first define a
cost function telling us how far apart two strings are, i.e., a distance
measure between pairs of strings.

The edit distance is the minimum number of changes required to
convert one string into another
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String edit operations

We consider three types of changes to compute edit distance:
1 Substitution: Change a single character from pattern s to a different

character in text t, such as changing “shot” to “spot”
2 Insertion: Insert a single character into pattern s to help it match text

t, such as changing “ago” to “agog”.
3 Deletion: Delete a single character from pattern s to help it match text

t, such as changing “hour” to “our”

This definition of edit distance is also called Levenshtein distance

Can you think of any other natural changes that might capture a
single misspelling?
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Edit distance application #1

Spell checkers identify words in a dictionary with close edit distance
to the misspelled word

But how do they order the list of suggestions?
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Edit distance application #2
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Edit distance: recursive algorithm design

Match: no substitutions

si−1����
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show����
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0

(d(si−1, tj−1) = 1) + 0

d(si , tj) = 1

Match: substitution
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Insertion
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Deletion
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Recursive edit distance code

def s t r i n g c ompa r e ( s , t ) :
#s t a r t by p r epend i ng empty c h a r a c t e r to check 1 s t cha r
s=” ”+s
t=” ”+t
P={}
@memo
def e d i t d i s t ( i , j ) :

i f i ==0: return j
i f j ==0: return i
#case 1 : check f o r match at i and j
i f s [ i ]==t [ j ] : c match = e d i t d i s t ( i −1, j −1)
e l s e : c match = e d i t d i s t ( i −1, j−1)+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = e d i t d i s t ( i , j−1)+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = e d i t d i s t ( i −1, j )+1
return min ( c match , c i n s , c d e l )

return e d i t d i s t ( l e n ( s )−1 , l e n ( t )−1)
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Towards a dynamic programming alternative

We note that there are only |s| possible values for i and |t| possible
values for j when invoking edit dist(i,j) recursively

This means there are at most |s| · |t| recursive function calls to cache
in an iterative version

The table is a two-dimensional matrix C where each of the |s| · |t|
cells contains the cost of the optimal solution of this subproblem

We just need a clever way to calculate the cost for each entry based
on only a small subset of already-computed values.
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Evaluation order

To determine the value of cell (i , j) we need three values to already
be computed: the cells (i − 1, j − 1), (i , j − 1), and (i − 1, j).

Any evaluation order with this property will do, including the
row-major order used in the upcoming code

But there are plenty of other valid orderings

Think of the cells as vertices, where there is an edge (i , j) if cell is
value is needed to compute cell j . Any topological sort of this DAG
provides a proper evaluation order.
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Edit distance: dynamic programming code

def i t e r s t r i n g c o m p a r e l i s t s ( s , t ) :
C , s , t = [ ] , ” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
C . append ( range ( l e n ( t )+1)) #i n i t i a l i z e c o s t data s t r u c t u r e
f o r i i n range ( l e n ( s ) ) :

C . append ( [ i +1])
f o r i i n range (1 , l e n ( s ) ) : #go through a l l c h a r a c t e r s o f s

f o r j i n range (1 , l e n ( t ) ) :
#case 1 : check f o r match at i and j
i f s [ i ]==t [ j ] : c match = C[ i −1] [ j −1]
e l s e : c match = C[ i −1] [ j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [ i ] [ j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [ i −1] [ j ]+1
c min=min ( c match , c i n s , c d e l )
C [ i ] . append ( c min )

return C[ i ] [ j ]
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Edit distance: DP with cost table as dictionary

def i t e r s t r i n g c om p a r e ( s , t ) :
C , s , t ={} ,” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
f o r j i n range ( l e n ( t ) ) : #i n i t i a l i z e c o s t data s t r u c t u r e

C[ 0 , j ]= j
f o r i i n range (1 , l e n ( s ) ) :

C [ i ,0 ]= i
f o r i i n range (1 , l e n ( s ) ) : #go through a l l c h a r s o f s

f o r j i n range (1 , l e n ( t ) ) :
#case 1 : check f o r match at i and j
i f s [ i ]==t [ j ] : c match = C[ i −1, j −1]
e l s e : c match = C[ i −1, j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [ i , j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [ i −1, j ]+1
c min=min ( c match , c i n s , c d e l )
C [ i , j ]= c min

return C[ i , j ]
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Building edit distance cache

s: run
t: drain

C d r a i n

0 ← 1← 1 ← 2 ← 3 ← 4 ← 5
r ↑ 1 � 1 � 1� 1 ← 2 ← 3 ← 4
u ↑ 2 � 2 � 2 � 2� 2 ← 3← 3 ← 4
n ↑ 3 � 3 � 3 � 3 � 3 � 3� 3

Steps to turn “run” into “drain”

1 Insert d

2 Keep r

3 Substitute a for u

4 Insert i

5 Keep n
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Edit distance exercises

Build cost table by hand following DP algorithm
1 s: bear, t: pea
2 s: farm, t: for

Performance cost of DP edit distance

Operations: Θ(|s| · |t|)
Storage: Θ(|s| · |t|)
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Variation of edit distance: approximate substring matching

Suppose we want to find the best close match to a smaller word in a
larger string (e.g., find the closest match to “Tulsa” in “SMU Tulda
Rice”)

We need to modify our existing code in two ways
1 Cost table initialization: all starting costs C[0,j] should be set to 0
2 Return the finishing cell C[i,k] that minimizes the overall cost
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Substring matching code

def i t e r s u b s t r i n g m a t c h ( s , t ) :
C , s , t ={} ,” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
f o r j i n range ( l e n ( t ) ) : #i n i t i a l i z e c o s t data s t r u c t u r e

C[ 0 , j ]=0 #changed : i g n o r e c o s t o f p r e c e d i n g unmatched t e x t
f o r i i n range (1 , l e n ( s ) ) :

C [ i ,0 ]= i
f o r i i n range (1 , l e n ( s ) ) : #go through a l l c h a r s o f s

f o r j i n range (1 , l e n ( t ) ) :
#case 1 : check f o r match at i and j
i f s [ i ]==t [ j ] : c match = C[ i −1, j −1]
e l s e : c match = C[ i −1, j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [ i , j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [ i −1, j ]+1
c min=min ( c match , c i n s , c d e l )
C [ i , j ]= c min

f i n j = min ( [ ( C [ i , k ] , k ) f o r k i n range (1 , l e n ( t )−1) ])
return ”wi th e d i t d i s t %i , %s morphs i n t o %s f i n i s h i n g at p o s i t i o n %
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Excercise: substring matching cache

s: Tulsa
t: SMU Tulda Rice

C S M U T u l d a R i c e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 0 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1
u ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 1 � 0 ← 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2
l ↑ 3 ↑ 3 ↑ 3 ↑ 3 ↑ 3 ↑ 2 ↑ 1 � 0 ← 1 ← 2 ← 3 ↑ 3 ↑ 3 ↑ 3 ↑ 3
s ↑ 4 ↑ 4 ↑ 4 ↑ 4 ↑ 4 ↑ 3 ↑ 2 ↑ 1 � 1 ← 2 ← 3 ↑ 4 ↑ 4 ↑ 4 ↑ 4
a ↑ 5 ↑ 5 ↑ 5 ↑ 5 ↑ 5 ↑ 4 ↑ 3 ↑ 2 � 2 � 1 ← 2 ← 3 ← 4 ↑ 5 ↑ 5

Substring ending at position 9 (“Tulda”) is the closest substring to “Tulsa”
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Variation of edit distance: longest common subsequence

We might want to find the longest scattered sequence of characters
within both strings

For example, the longest common subsequence of “republican” and
“democrat” is “eca”

To get the longest subsequence, we can still allow insertions and
deletions, but substitutions are forbidden

We can change the edit distance code to behave as before on matches
where the last characters are the same, but never select a substitution
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