
Dynamic Programming
Edit distance and its variants

Tyler Moore

CSE 3353, SMU, Dallas, TX

Lecture 17

Some slides created by or adapted from Dr. Kevin Wayne. For more information see

http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Some code reused from Python Algorithms by Magnus Lie

Hetland.

Edit distance

Misspellings make approximate pattern matching an important
problem

If we are to deal with inexact string matching, we must first define a
cost function telling us how far apart two strings are, i.e., a distance
measure between pairs of strings.

The edit distance is the minimum number of changes required to
convert one string into another

2 / 18

String edit operations

We consider three types of changes to compute edit distance:
1 Substitution: Change a single character from pattern s to a different

character in text t, such as changing “shot” to “spot”
2 Insertion: Insert a single character into pattern s to help it match text

t, such as changing “ago” to “agog”.
3 Deletion: Delete a single character from pattern s to help it match text

t, such as changing “hour” to “our”

This definition of edit distance is also called Levenshtein distance

Can you think of any other natural changes that might capture a
single misspelling?

3 / 18

Edit distance application #1

Spell checkers identify words in a dictionary with close edit distance
to the misspelled word

But how do they order the list of suggestions?

4 / 18

Edit distance application #2

5 / 18

1 278 cartoonnetwork.com typos, including. . .fartoonnetwork.com cagtoonnetwork.com cartlonnetwork.com cartoonnestwork.com cartoonnewotk.com

cartoonnetsork.com cartoinnetwork.com cartolnnetwork.com cartoonnftwork.com cartoonneywork.com

cartoonntewrk.com cartoonnetlork.com cartoonnetowok.com crtonnetwork.com cartoonnegwork.com

cargoonnetwork.com carttoonnnetwork.com cartoonnwetwork.com cartoonetrwork.com cartoonnetwodrk.com

cartoonnetwkor.com catoonnnetwork.com cartoooonnetwork.com caoonnetwork.com cartonbetwork.com

cartoonetgork.com cartoonnetqork.com cartoonneetwort.com cartoonneetwork.com catoonnetwrok.com

cartoomnetwoork.com caryoonetwork.com cartooonetwork.com cantoonnetwork.com cargoonnetworm.com

caretoonetwork.com cartoonetwoork.com cartoonnetwoer.com carttoonnetwerk.com chartoonnetwork.com

cartoonnetwokr.com cartoonnetwokl.com cartoonnetwoke.com cartoownnetwork.com cartoobetwork.com

cartoonnetworkcom.com nartoonnetwork.com cartoonnstwork.com cartoounnetwork.com cartoonework.com

carfoonnetwork.com cartoonnotwork.com cartoonnnetwok.com cartoonnnetwor.com cartonnetwortk.com

cartoopnetwork.com cartoonnetwogk.com cartoonetwaork.com cartoonntewrok.com cartoonetwoek.com

caqrtoonetwork.com cartoonneework.com cartppnnetwork.com cartoonnetmwork.com cartooonework.com

cartoonntwoork.com catoonneetwork.com crattoonnetwork.com cartoonnetweark.com carttooonetwork.com

cartoonetwoirk.com cartoonznetwork.com cartoobnetwork.com catoonnework.com cartiinnetwork.com

cartoonnnetwrk.com cartoommetwork.com cartoonnetwart.com wwwcartonetwork.com cartoonnttwork.com

cartoonhetwork.com fcartoonnetwork.com catoonnetwerk.com artoonnetwor.com cartoonnetwock.com

cartoonnetook.com cartoonnetkwork.com cartonnetwokr.com carltonnetwork.com cartoonetowrk.com

catoonnettwork.com cartoo0nnetwork.com cacrtoonnetwork.com cartoonnetwoorkl.com cartoonedtwork.com

cartoonnetwcrk.com cartoonetwrk.com cartoonnewark.com cartoonnetwoirk.com cartoknnetwork.com

cartooonnetwrk.com cartoonnetbwork.com caetooonetwork.com cartoonknetwork.com catoomnetwork.com

cartoonnexwork.com carooonnetwork.com dartoonnetwork.com certoonnetwork.com cartoonetword.com

cartoonetworg.com cartoonetworl.com cartoonetworj.com cartoonetwork.com cartoonetwort.com

crattonnetwork.com cartoonnewtokr.com carntoonnetwork.com caretoonnetwork.com cartooonnetwoork.com

cartoonnerwort.com cartoonnerwork.com cartoonnerworl.com cartoonnetfork.com cartoonnetttwork.com

cartoonnetwar.com cartoonnetwak.com cartoonnekwork.com cartooknetwork.com cartoonegwork.com

cattoonnetwok.com cartoonnetwwork.com cartoonnetgor.com cartoonnetwowk.com wwwcatoonetwork.com

cartoolnnetwork.com cartoonetworkcom.com casrtoonetwork.com cartoonnetswork.com cartoonnedwort.com

cartoonnedword.com cartoonnedwork.com wwwcarttoonnetwork.com cartoonerwork.com cattoonnetwark.com

carttoonnetwook.com cartoonnetwowrk.com cartoonetwqork.com crartoonnetwork.com czrtoonnetwork.com

cartomnetwork.com cartoonnetwrak.com cartoonnetorg.com cratonnetwork.com crtoonnework.com

cartioonnetwork.com cartoonnetvork.com catoonnetwort.com cartoonnetwold.com cartoonnetwolk.com

cartoonsnetwork.com wwwcartoonetwerk.com carttoonntwork.com cartownnetwork.com carthonnetwork.com

wwwcartoonnnetwork.com caatoonnetwork.com caetonnetwork.com cartcoonnetwork.com cartooanetwork.com

caartoonnetwor.com cartoonnntwork.com cartoonnetw2ork.com cartoonnaetwork.com cartoonne6work.com

dcartoonnetwork.com cartoonnerwok.com cartonneywork.com hcartoonnetwork.com artoonetwork.com

cartoonnetwoyk.com cartoonnetworek.com cartoonnetwo5k.com carttonnetwoork.com cartoonnettwork.com

caqrtoonnetwork.com cartoonvetwork.com cartoometwork.com cartooetwork.com cartoonnetwwwork.com

cartoonnetwokrk.com cartoonnektwork.com cartoonetwiork.com cartoonetwirk.com carttoonetwork.com

wwwcaroonnetwork.com cartoonnetwood.com cartoonnetwook.com cartoonnetwoot.com cartoonnetwoor.com

6 / 18

Edit distance: recursive algorithm design

Match: no substitutions

si−1����
shoe s

show����
tj−1

s����
0

(d(si−1, tj−1) = 1) + 0

d(si , tj) = 1

Match: substitution

si−1����
shoe s

show����
tj−1

n����
1

(d(si−1, tj−1) = 1) + 1

d(si , tj) = 2

Insertion

si����
show

show����
tj−1

n����
1

(d(si , tj−1) = 0) + 1

d(si , tj) = 1

Deletion

si−1����
shoo k

show����
tj

����
1

(d(si−1, tj) = 1) + 1

d(si , tj) = 2
7 / 18

Recursive edit distance code

def s t r i n g c ompa r e (s , t) :
#s t a r t by p r epend i ng empty c h a r a c t e r to check 1 s t cha r
s=” ”+s
t=” ”+t
P={}
@memo
def e d i t d i s t (i , j) :

i f i ==0: return j
i f j ==0: return i
#case 1 : check f o r match at i and j
i f s [i]==t [j] : c match = e d i t d i s t (i −1, j −1)
e l s e : c match = e d i t d i s t (i −1, j−1)+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = e d i t d i s t (i , j−1)+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = e d i t d i s t (i −1, j)+1
return min (c match , c i n s , c d e l)

return e d i t d i s t (l e n (s)−1 , l e n (t)−1)

8 / 18

Towards a dynamic programming alternative

We note that there are only |s| possible values for i and |t| possible
values for j when invoking edit dist(i,j) recursively

This means there are at most |s| · |t| recursive function calls to cache
in an iterative version

The table is a two-dimensional matrix C where each of the |s| · |t|
cells contains the cost of the optimal solution of this subproblem

We just need a clever way to calculate the cost for each entry based
on only a small subset of already-computed values.

9 / 18

Evaluation order

To determine the value of cell (i , j) we need three values to already
be computed: the cells (i − 1, j − 1), (i , j − 1), and (i − 1, j).

Any evaluation order with this property will do, including the
row-major order used in the upcoming code

But there are plenty of other valid orderings

Think of the cells as vertices, where there is an edge (i , j) if cell is
value is needed to compute cell j . Any topological sort of this DAG
provides a proper evaluation order.

10 / 18

Edit distance: dynamic programming code

def i t e r s t r i n g c o m p a r e l i s t s (s , t) :
C , s , t = [] , ” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
C . append (range (l e n (t)+1)) #i n i t i a l i z e c o s t data s t r u c t u r e
f o r i i n range (l e n (s)) :

C . append ([i +1])
f o r i i n range (1 , l e n (s)) : #go through a l l c h a r a c t e r s o f s

f o r j i n range (1 , l e n (t)) :
#case 1 : check f o r match at i and j
i f s [i]==t [j] : c match = C[i −1] [j −1]
e l s e : c match = C[i −1] [j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [i] [j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [i −1] [j]+1
c min=min (c match , c i n s , c d e l)
C [i] . append (c min)

return C[i] [j]

11 / 18

Edit distance: DP with cost table as dictionary

def i t e r s t r i n g c om p a r e (s , t) :
C , s , t ={} ,” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
f o r j i n range (l e n (t)) : #i n i t i a l i z e c o s t data s t r u c t u r e

C[0 , j]= j
f o r i i n range (1 , l e n (s)) :

C [i ,0]= i
f o r i i n range (1 , l e n (s)) : #go through a l l c h a r s o f s

f o r j i n range (1 , l e n (t)) :
#case 1 : check f o r match at i and j
i f s [i]==t [j] : c match = C[i −1, j −1]
e l s e : c match = C[i −1, j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [i , j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [i −1, j]+1
c min=min (c match , c i n s , c d e l)
C [i , j]= c min

return C[i , j]

12 / 18

Building edit distance cache

s: run
t: drain

C d r a i n

0 ← 1← 1 ← 2 ← 3 ← 4 ← 5
r ↑ 1 � 1 � 1� 1 ← 2 ← 3 ← 4
u ↑ 2 � 2 � 2 � 2� 2 ← 3← 3 ← 4
n ↑ 3 � 3 � 3 � 3 � 3 � 3� 3

Steps to turn “run” into “drain”

1 Insert d

2 Keep r

3 Substitute a for u

4 Insert i

5 Keep n

13 / 18

Edit distance exercises

Build cost table by hand following DP algorithm
1 s: bear, t: pea
2 s: farm, t: for

Performance cost of DP edit distance

Operations: Θ(|s| · |t|)
Storage: Θ(|s| · |t|)

14 / 18

Variation of edit distance: approximate substring matching

Suppose we want to find the best close match to a smaller word in a
larger string (e.g., find the closest match to “Tulsa” in “SMU Tulda
Rice”)

We need to modify our existing code in two ways
1 Cost table initialization: all starting costs C[0,j] should be set to 0
2 Return the finishing cell C[i,k] that minimizes the overall cost

15 / 18

Substring matching code

def i t e r s u b s t r i n g m a t c h (s , t) :
C , s , t ={} ,” ”+s , ” ”+t #prepend empty c h a r a c t e r f o r edge ca se
f o r j i n range (l e n (t)) : #i n i t i a l i z e c o s t data s t r u c t u r e

C[0 , j]=0 #changed : i g n o r e c o s t o f p r e c e d i n g unmatched t e x t
f o r i i n range (1 , l e n (s)) :

C [i ,0]= i
f o r i i n range (1 , l e n (s)) : #go through a l l c h a r s o f s

f o r j i n range (1 , l e n (t)) :
#case 1 : check f o r match at i and j
i f s [i]==t [j] : c match = C[i −1, j −1]
e l s e : c match = C[i −1, j −1]+1
#case 2 : t h e r e i s an e x t r a c h a r a c t e r to i n s e r t
c i n s = C [i , j −1]+1
#case 3 : t h e r e i s an e x t r a c h a r a c t e r to remove
c d e l = C [i −1, j]+1
c min=min (c match , c i n s , c d e l)
C [i , j]= c min

f i n j = min ([(C [i , k] , k) f o r k i n range (1 , l e n (t)−1)])
return ”wi th e d i t d i s t %i , %s morphs i n t o %s f i n i s h i n g at p o s i t i o n %

16 / 18

Excercise: substring matching cache

s: Tulsa
t: SMU Tulda Rice

C S M U T u l d a R i c e

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 0 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1
u ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 1 � 0 ← 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2
l ↑ 3 ↑ 3 ↑ 3 ↑ 3 ↑ 3 ↑ 2 ↑ 1 � 0 ← 1 ← 2 ← 3 ↑ 3 ↑ 3 ↑ 3 ↑ 3
s ↑ 4 ↑ 4 ↑ 4 ↑ 4 ↑ 4 ↑ 3 ↑ 2 ↑ 1 � 1 ← 2 ← 3 ↑ 4 ↑ 4 ↑ 4 ↑ 4
a ↑ 5 ↑ 5 ↑ 5 ↑ 5 ↑ 5 ↑ 4 ↑ 3 ↑ 2 � 2 � 1 ← 2 ← 3 ← 4 ↑ 5 ↑ 5

Substring ending at position 9 (“Tulda”) is the closest substring to “Tulsa”

17 / 18

Variation of edit distance: longest common subsequence

We might want to find the longest scattered sequence of characters
within both strings

For example, the longest common subsequence of “republican” and
“democrat” is “eca”

To get the longest subsequence, we can still allow insertions and
deletions, but substitutions are forbidden

We can change the edit distance code to behave as before on matches
where the last characters are the same, but never select a substitution

18 / 18

