
Chapter 2

Quantitative Data

2.1 Introduction

This chapter covers some basic numerical and graphical summaries of data.
Different numerical summaries and graphical displays would be appropriate
for different types of data. A variable may be classified as one of the following
types,

� Quantitative (numeric or integer)
� Ordinal (ordered, like integers)
� Qualitative (categorical, nominal, or factor)

and a data frame may contain several variables of possibly different types.
There may be some structure to the data, such as in time series data, which
has a time index. In this chapter we present examples of selected numerical
and graphical summaries for various types of data. Chapter 3 covers sum-
maries of categorical data in more detail. A natural continuation of Chapters
2 and 3 might be Chapter 5, “Exploratory Data Analysis.”

2.2 Bivariate Data: Two Quantitative Variables

Our first example is a bivariate data set with two numeric variables, the
body and brain size of mammals. We use it to illustrate some basic statistics,
graphics, and operations on the data.
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44 2 Quantitative Data

2.2.1 Exploring the data

Body and brain size of mammals

There are many data sets included with the R distribution. A list of the
available data sets can be displayed with the data() command. MASS [50] is
one of the recommended packages that is bundled with the base R package,
so it should already be installed with R. To use the data sets or functions in
MASS one first loads MASS by the command

> library(MASS) #load the package

> data() #display available datasets

After the MASS package is loaded, the data sets in MASS will be included in
the list of available datasets generated by the data() command.

Example 2.1 (mammals). In the result of the data() command, under the
heading “Data sets in package MASS:” there is a data set named mammals.
The command

> ?mammals

displays information about the mammals data. This data contains brain size
and body size for 62 mammals. Typing the name of the data set causes the
data to be printed at the console. It is rather long, so here we just display
the first few observations using head.

> head(mammals)

body brain

Arctic fox 3.385 44.5

Owl monkey 0.480 15.5

Mountain beaver 1.350 8.1

Cow 465.000 423.0

Grey wolf 36.330 119.5

Goat 27.660 115.0

This data consists of two numeric variables, body and brain.

Rx 2.1 In the display above it is not obvious whether mammals is a matrix
or a data frame. One way to check whether we have a matrix or a data frame
is:

> is.matrix(mammals)

[1] FALSE

> is.data.frame(mammals)

[1] TRUE

One could convert mammals to a matrix by as.matrix(mammals) if a matrix
would be required in an analysis.
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Some basic statistics and plots

The summary method computes a five number summary and mean for each
numeric variable in the data frame.

> summary(mammals)

body brain

Min. : 0.005 Min. : 0.14

1st Qu.: 0.600 1st Qu.: 4.25

Median : 3.342 Median : 17.25

Mean : 198.790 Mean : 283.13

3rd Qu.: 48.203 3rd Qu.: 166.00

Max. :6654.000 Max. :5712.00

If there were any missing data, these would appear in the summary as NA.
The five number summaries are difficult to interpret because there are some
extremely large observations (the means exceed not only the medians but
also the third quartiles). This is clear if we view the five number summaries
as side-by-side boxplots.

> boxplot(mammals)

The boxplots are shown in Figure 2.1(a). A scatterplot helps to visualize the
relation between two quantitative variables. For a data frame with exactly
two numeric variables like mammals, a scatterplot is obtained with the default
arguments of plot.

> plot(mammals)

The scatterplot, shown in Figure 2.2(a), is not as informative as it could be
because of the scale. A log transformation may produce a more informative
plot. We display the scatterplot for the full mammals data set (on log-log scale)
in Figure 2.2(b). (The log function computes the natural logarithm.)

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

In the second plot command we have also added descriptive labels for the
axes.

Rx 2.2 We have seen that mammals consists of two numeric variables, body
and brain, so the operation log(mammals) applies the natural logarithm func-
tion to the two numeric variables, returning a data frame of two numeric
variables (log(body), log(brain)). This is a convenient shortcut, but of course
it would not work if the data frame contained variables for which the logarithm
is undefined.

The summaries for the logarithms of body size and brain size are

> summary(log(mammals))

body brain

Min. :-5.2983 Min. :-1.966

1st Qu.:-0.5203 1st Qu.: 1.442
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Median : 1.2066 Median : 2.848

Mean : 1.3375 Mean : 3.140

3rd Qu.: 3.8639 3rd Qu.: 5.111

Max. : 8.8030 Max. : 8.650

and the corresponding side-by-side boxplots of the transformed data shown
in Figure 2.1(b) are obtained by

boxplot(log(mammals), names=c("log(body)", "log(brain)"))

The default labels on the boxplots in Figure 2.1(b) would have been the
variable names (“body”, “brain”), so we added more descriptive labels to the
plot with names.
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Fig. 2.1 Box plots of mammals brain size vs body size on (a) original and (b) log-log
scale in Example 2.1.

2.2.2 Correlation and regression line

In Figure 2.2(b) we can now observe a linear trend; logarithms of body and
brain size are positively correlated. We can compute the correlation matrix
of the data on the log-log scale by

> cor(log(mammals))

body brain

body 1.0000000 0.9595748

brain 0.9595748 1.0000000

or compute the correlation coefficient by
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Fig. 2.2 Scatterplots of mammals brain size vs body size on (a) original and (b)
log-log scale in Example 2.1.

> cor(log(mammals$body), log(mammals$brain))

[1] 0.9595748

Simple linear regression is covered in Chapter 7. However, the code to add a
fitted straight line to the log-log plot is quite simple. The lm function returns
the coefficients of the line, and the line can be added to the log-log plot by
the abline function (see Figure 2.3.)

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

> x = log(mammals$body); y = log(mammals$brain)

> abline(lm(y ~ x))

Rx 2.3 A fitted line was added to the scatterplot in Figure 2.3 by the code
abline(lm(y ~ x)). lm is a function and y ~ x is a formula. This is one
of many examples where the formula syntax is used in this book. A formula

can be recognized by the tilde operator ∼, which connects a dependent vari-
able on the left and predictor variable(s) on the right. Formulas will appear
as arguments of some types of plot functions, and in the model specification
argument for regression and analysis of variance model fitting. See the box-

plot function that is used to produce Figure 2.4 below for an example of a
formula argument in a plotting function.
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Fig. 2.3 Scatterplot on log-log scale with fitted line in Example 2.1.

2.2.3 Analysis of bivariate data by group

IQ of twins

Example 2.2 (IQ of twins separated near birth). The data file “twinIQ.txt”
contains IQ data on identical twins that were separated near birth. The data
in the file is also available as a data set in the UsingR package [51] as twins.
There are 27 observations on 3 variables:

Foster IQ for twin raised with foster parents
Biological IQ for twin raised with biological parents
Social Social status of biological parents

The data set, which is shown in Table 2.1, can be imported using

> twins = read.table("c:/Rx/twinIQ.txt", header=TRUE)

and we display the first few observations with

> head(twins)

Foster Biological Social

1 82 82 high

2 80 90 high

3 88 91 high

4 108 115 high

5 116 115 high

6 117 129 high
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Next, we compute appropriate numerical summaries for each variable using
summary.

> summary(twins)

Foster Biological Social

Min. : 63.00 Min. : 68.0 high : 7

1st Qu.: 84.50 1st Qu.: 83.5 low :14

Median : 94.00 Median : 94.0 middle: 6

Mean : 95.11 Mean : 95.3

3rd Qu.:107.50 3rd Qu.:104.5

Max. :132.00 Max. :131.0

The summary function displays five number summaries and means for the two
IQ scores, which are numeric, and a frequency table for the factor, Social.
The five number summaries of the IQ scores are very similar.

Table 2.1 IQ of twins separated near birth. The data is given in three columns in
the file “twinIQ.txt”.

Foster Biological Social Foster Biological Social Foster Biological Social
82 82 high 71 78 middle 63 68 low
80 90 high 75 79 middle 77 73 low
88 91 high 93 82 middle 86 81 low

108 115 high 95 97 middle 83 85 low
116 115 high 88 100 middle 93 87 low
117 129 high 111 107 middle 97 87 low
132 131 high 87 93 low

94 94 low
96 95 low

112 97 low
113 97 low
106 103 low
107 106 low
98 111 low

We can display side-by-side boxplots of the difference in IQ scores by social
status for comparison, using the formula Foster - Biological ∼ Social.

> boxplot(Foster - Biological ~ Social, twins)

The boxplot shown in Figure 2.4 suggests that there could be differences
in IQ for twins raised separately, but it is not clear whether the differences
are significant. Another way to view this data is in a scatterplot, with the
social status indicated by plotting character or color. This type of plot can
be displayed by creating an integer variable for Social and using it to select
the plotting characters (pch) and colors (col).

> status = as.integer(Social)

> status

[1] 1 1 1 1 1 1 1 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> plot(Foster ~ Biological, data=twins, pch=status, col=status)
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The scatterplot is shown in Figure 2.5. Note that the levels of the factor
Social are converted in alphabetical order: high=1, low=2, middle=3. To
add the legend to the plot we used

> legend("topleft", c("high","low","middle"),

+ pch=1:3, col=1:3, inset=.02)

(On a color display, the symbols for high, low, and medium appear in colors
black, red, and green, respectively.) To add the line Foster=Biological to the
plot, we used abline with intercept 0 and slope 1:

> abline(0, 1)

Figure 2.5 does not reveal any dramatic differences by social status, although
the high social status group may correspond to higher IQ scores for twins
with their biological parents.

high low middle
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Fig. 2.4 Boxplots of the differences in twins IQ scores (Foster-Biological) in Example
2.2.

2.2.4 Conditional plots

Continuing with the twins data, we illustrate a basic conditional plot dis-
played with the coplot function. Instead of displaying the data in different
colors or plotting characters, coplot displays several scatterplots, all on the
same scale. We set this up with a formula y ∼ x | a, which indicates that
the plots of y vs x should be conditional on variable a.
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Fig. 2.5 Scatterplot of twins IQ in Example 2.2.

> coplot(Foster ~ Biological|Social, data=twins)

The coplot is shown in Figure 2.6. The order of the plots is from the bottom
and from the left (corresponding to increasing values of a, typically). In our
coplot, Figure 2.6, that order is: high (lower left), low (lower right), middle
(top left), because they are in alphabetical order.

Another version of this type of conditional plot is provided by the function
xyplot in the lattice package. The lattice package is included in the R
distribution so it should already be installed. To use the function xyplot we
first load the lattice package using library. The basic syntax for xyplot
in this example is

xyplot(Foster ~ Biological|Social, data=twins)

The above command displays a conditional plot (not shown) that is similar
to the one in Figure 2.7, but with the default plotting character of an open
blue circle. To obtain Figure 2.7 we used the following syntax that specifies
a solid circle (pch=20) in the color black (col=1).

> library(lattice)

> xyplot(Foster ~ Biological|Social, data=twins, pch=20, col=1)

Neither of the conditional plots in Figures 2.6 or 2.7 reveal an obvious
pattern or dependence on the conditioning variable social status.
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Fig. 2.6 Conditional plot (coplot) of twins IQ by social status of biological parents,
in Example 2.2.

2.3 Multivariate Data: Several Quantitative Variables

Example 2.3 (Brain size and intelligence).
Data from a study comparing brain size and intelligence is available on the

DASL web site [12]. Willerman et al. [56] collected a sample of 40 students’
IQ and brain size measured by MRI. There are 8 variables:

Variable Description
Gender Male or Female
FSIQ Full Scale IQ scores based on four Wechsler (1981) subtests
VIQ Verbal IQ scores based on four Wechsler (1981) subtests
PIQ Performance IQ scores based on four Wechsler (1981) subtests
Weight Body weight in pounds
Height Height in inches
MRI Count total pixel Count from the 18 MRI scans
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Fig. 2.7 Conditional scatterplot (using xyplot in the lattice package) of twins IQ
by social status of biological parents, in Example 2.2.

2.3.1 Exploring the data

After reading in the data using read.table we use the summary function to
display summary statistics.

> brain = read.table("brainsize.txt", header=TRUE)

> summary(brain)

Gender FSIQ VIQ PIQ

Female:20 Min. : 77.00 Min. : 71.0 Min. : 72.00

Male :20 1st Qu.: 89.75 1st Qu.: 90.0 1st Qu.: 88.25

Median :116.50 Median :113.0 Median :115.00

Mean :113.45 Mean :112.3 Mean :111.03

3rd Qu.:135.50 3rd Qu.:129.8 3rd Qu.:128.00

Max. :144.00 Max. :150.0 Max. :150.00
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Weight Height MRI_Count

Min. :106.0 Min. :62.00 Min. : 790619

1st Qu.:135.2 1st Qu.:66.00 1st Qu.: 855919

Median :146.5 Median :68.00 Median : 905399

Mean :151.1 Mean :68.53 Mean : 908755

3rd Qu.:172.0 3rd Qu.:70.50 3rd Qu.: 950078

Max. :192.0 Max. :77.00 Max. :1079549

NA�s : 2.0 NA�s : 1.00

The summary function displays appropriate summary statistics for each
type of variable; a table is displayed for the categorical variable Gender, and
the mean and quartiles are displayed for each numerical type of variable. The
summaries show that there are some missing values of Weight and Height.

2.3.2 Missing values

There are several options for computing statistics for data with missing val-
ues. Many basic statistics functions such as mean, sd, or cor return missing
values when missing values are present in the data. For example,

> mean(brain$Weight)

[1] NA

The help topic for a particular function explains what options are available.
For the mean the optional argument is na.rm, which is FALSE by default.
Setting it to TRUE allows the computation of the mean with the missing
value(s) removed.

> mean(brain$Weight, na.rm=TRUE)

[1] 151.0526

This result is the same as the mean reported by summary on page 53.

2.3.3 Summarize by group

There are 20 males and 20 females in this data set, and on average males have
larger bodies than females. Larger body size may be related to larger brain
size, as we saw in Example 2.1. It may be informative to display statistics sep-
arately for males and females, which is easily done using the by function. The
basic syntax for the by function is by(data, INDICES, FUN, ...) where the
dots indicate possible additional arguments to the function named by FUN.
This provides a place for our na.rm=TRUE argument to the mean function. For
data we want to include all but the first variable using either brain[, -1]

or brain[, 2:7]. This syntax, which omits the row index, indicates that we
want all rows of data.



2.3 Multivariate Data: Several Quantitative Variables 55

> by(data=brain[, -1], INDICES=brain$Gender, FUN=mean, na.rm=TRUE)

brain$Gender: Female

FSIQ VIQ PIQ Weight Height MRI_Count

111.900 109.450 110.450 137.200 65.765 862654.600

------------------------------------------------------------

brain$Gender: Male

FSIQ VIQ PIQ Weight Height MRI_Count

115.00000 115.25000 111.60000 166.44444 71.43158 954855.40000

As expected, the average weight, height, and MRI count is larger for males
than for females.

A way to visualize the MRI counts by gender is to use a different color
and/or plotting symbol in a scatterplot. The plot command is simpler if we
first attach the data frame so that the variables can be referenced directly
by name. A plot of MRI_Count by Weight is obtained by

> attach(brain)

> gender = as.integer(Gender) #need integer for plot symbol, color

> plot(Weight, MRI_Count, pch=gender, col=gender)

It is helpful to add a legend to identify the symbol and color for each gender.
The levels of Gender are numbered in alphabetical order when gender is
created, so 1 indicates “Female” and 2 indicates “Male”.

> legend("topleft", c("Female", "Male"), pch=1:2, col=1:2, inset=.02)

The plot with the legend is shown in Figure 2.8. In this plot it is easy to see
an overall pattern that MRI_Count increases with Weight and that MRI_Count
for males tend to be larger than MRI_Count for females.

2.3.4 Summarize pairs of variables

A pairs plot displays a scatterplot for each pair of quantitative variables. We
want to display scatterplots for all pairs excluding the first variable (gender)
in the data frame.

> pairs(brain[, 2:7])

In the pairs plot shown in Figure 2.9, each of the pairs of IQ plots have points
that are clearly clustered in two groups. It appears that perhaps a group of
lower IQ and higher IQ individuals were selected for this study. Consulting
the online documentation1 for this data, we find that: “With prior approval
of the University’s research review board, students selected for MRI were
required to obtain prorated full-scale IQs of greater than 130 or less than
103, and were equally divided by sex and IQ classification.”

1 http://lib.stat.cmu.edu/DASL/Stories/BrainSizeandIntelligence.html

http://lib.stat.cmu.edu/DASL/Stories/BrainSizeandIntelligence.html
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Fig. 2.8 Scatterplot of MRI count vs weight in Example 2.3.

The pairs plot in Figure 2.9 reveals that some variables such as the IQ
scores (FSIQ, VIQ, PIQ) have positive correlation. A table of Pearson cor-
relation coefficients can be displayed using the cor function; here we round
the table to two decimal places.

> round(cor(brain[, 2:7]), 2)

FSIQ VIQ PIQ Weight Height MRI_Count

FSIQ 1.00 0.95 0.93 NA NA 0.36

VIQ 0.95 1.00 0.78 NA NA 0.34

PIQ 0.93 0.78 1.00 NA NA 0.39

Weight NA NA NA 1 NA NA

Height NA NA NA NA 1 NA

MRI_Count 0.36 0.34 0.39 NA NA 1.00

There are strong positive correlations between each of the IQ scores, but
many of the correlations could not be computed due to the missing values in
the data.

For computing covariances and correlations for data with missing values,
there are several options. Here is one possible option that can be specified
by the use argument in cor: if use="pairwise.complete.obs" then the
correlation or covariance between each pair of variables is computed using all
complete pairs of observations on those variables.
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Fig. 2.9 Pairs plot of brain size and IQ measurements in Example 2.3.

> round(cor(brain[, 2:7], use="pairwise.complete.obs"), 2)

FSIQ VIQ PIQ Weight Height MRI_Count

FSIQ 1.00 0.95 0.93 -0.05 -0.09 0.36

VIQ 0.95 1.00 0.78 -0.08 -0.07 0.34

PIQ 0.93 0.78 1.00 0.00 -0.08 0.39

Weight -0.05 -0.08 0.00 1.00 0.70 0.51

Height -0.09 -0.07 -0.08 0.70 1.00 0.60

MRI_Count 0.36 0.34 0.39 0.51 0.60 1.00

(For another approach see the function complete.cases.)
The pairs plot (Figure 2.9) and the correlation matrix suggest a mild

positive association (r = 0.36) between brain size and IQ. However, the MRI
count is also correlated with body size (weight and height). If we control for
body size as measured by say, weight,

> mri = MRI_Count / Weight

> cor(FSIQ, mri, use="pairwise.complete.obs")

[1] 0.2353080
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the sample correlation of mri with FSIQ (r = 0.235) is smaller than the cor-
relation of MRI_Count with FSIQ (r = 0.36).

One could test whether the correlation is significant using the correlation
test cor.test. Before adjusting for body size, we have

> cor.test(FSIQ, MRI_Count)

Pearson�s product-moment correlation

data: FSIQ and MRI_Count

t = 2.3608, df = 38, p-value = 0.02347

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.05191544 0.60207414

sample estimates:

cor

0.357641

The correlation test is significant at α = 0.05. However, if we adjust for body
size (using the transformed variable mri), the p-value is not significant at
α = 0.05.
> cor.test(FSIQ, mri)$p.value

[1] 0.1549858

For most statistical tests in R, the p-value of the test can be extracted like
the example above.

2.3.5 Identifying missing values

This data frame (brain) has some missing values. The summary on page 53
indicates that there are two missing heights and one missing weight in the
data. To identify these observations, we can use which and is.na.

> which(is.na(brain), arr.ind=TRUE)

row col

[1,] 2 5

[2,] 21 5

[3,] 21 6

When using which on an object like a data frame or matrix we need
arr.ind=TRUE to get the row and column numbers. Observations 2 and 21
have missing data in column 5 (height), and observation 21 has missing data
in column 6 (weight). The missing observations are in rows 2 and 21, which
we can extract by

> brain[c(2, 21), ]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

2 Male 140 150 124 NA 72.5 1001121

21 Male 83 83 86 NA NA 892420



2.4 Time Series Data 59

For example, one could replace missing values with the sample mean as
follows.

> brain[2, 5] = mean(brain$Weight, na.rm=TRUE)

> brain[21, 5:6] = c(mean(brain$Weight, na.rm=TRUE),

+ mean(brain$Height, na.rm=TRUE))

The updated rows 2 and 21 in the data frame are

> brain[c(2, 22), ]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

2 Male 140 150 124 151.0526 72.5 1001121

22 Male 97 107 84 186.0000 76.5 905940

2.4 Time Series Data

Example 2.4 (New Haven temperatures). The R data set nhtemp contains the
average yearly temperatures in degrees Farenheit for New Haven, Connecti-
cut, from 1912 to 1971. This is an example of a time series. The temperature
variable is indexed by year.

> nhtemp

Time Series:

Start = 1912

End = 1971

Frequency = 1

[1] 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 50.8 49.6

[13] 49.3 50.6 48.4 50.7 50.9 50.6 51.5 52.8 51.8 51.1 49.8 50.2

[25] 50.4 51.6 51.8 50.9 48.8 51.7 51.0 50.6 51.7 51.5 52.1 51.3

[37] 51.0 54.0 51.4 52.7 53.1 54.6 52.0 52.0 50.9 52.6 50.2 52.6

[49] 51.6 51.9 50.5 50.9 51.7 51.4 51.7 50.8 51.9 51.8 51.9 53.0

To visualize the pattern of temperatures over the years 1912 to 1971, we can
easily display a time series plot using the plot function. For time series data,
plot displays a line plot with time on the horizontal axis. The time plot is
shown in Figure 2.10.

> plot(nhtemp)

One may be interested in identifying any trend in mean annual tempera-
tures over the years represented by this data. One way to visualize possible
trends is by fitting a smooth curve. One method of fitting a smooth curve
is provided by the lowess function, which is based on locally-weighted poly-
nomial regression. Below we plot the data again, this time including a more
descriptive label for temperature, and add a horizontal reference line through
the grand mean using abline. The smooth curve is added to the current plot
with lines. (See Figure 2.11.)

> plot(nhtemp, ylab="Mean annual temperatures")

> abline(h = mean(nhtemp))

> lines(lowess(nhtemp))
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Fig. 2.10 Time plot of mean annual temperatures in New Haven, Connecticut.

For modeling, one often wishes to transform a time series so that the mean
is stable over time. When a mean appears to have an approximately linear
trend over time as in Figure 2.11, first differences often remove the trend.
If X1,X2, . . . is the time series, then we can obtain the time series of first
differences X2 −X1,X3 −X2, . . . using the diff function.

> diff(nhtemp)

Time Series:

Start = 1913

End = 1971

Frequency = 1

[1] 2.4 -2.9 1.7 -1.7 -1.5 1.9 1.1 -1.6 2.6 -1.1 -1.2 -0.3

[13] 1.3 -2.2 2.3 0.2 -0.3 0.9 1.3 -1.0 -0.7 -1.3 0.4 0.2

[25] 1.2 0.2 -0.9 -2.1 2.9 -0.7 -0.4 1.1 -0.2 0.6 -0.8 -0.3

[37] 3.0 -2.6 1.3 0.4 1.5 -2.6 0.0 -1.1 1.7 -2.4 2.4 -1.0

[49] 0.3 -1.4 0.4 0.8 -0.3 0.3 -0.9 1.1 -0.1 0.1 1.1

A time plot for the differenced series of temperatures with a reference line
through 0 and lowess curve is obtained by the code below and shown in
Figure 2.12.

> d = diff(nhtemp)

> plot(d, ylab="First differences of mean annual temperatures")

> abline(h = 0, lty=3)

> lines(lowess(d))

Figure 2.12 suggests that the mean of the differenced series is stable over
time; notice that the lowess curve (solid line) is nearly horizontal and very
close to the dotted horizontal line through 0.
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2.5 Integer Data: Draft Lottery

Example 2.5 (The 1970 Draft Lottery Data ).
During the VietnamWar, the Selective Service System of the United States

held a draft lottery on December 1, 1969 to determine the order of draft
(induction) into the Army. The 366 birthdays (including leap year birthdays)
were drawn to determine the order that eligible men would be called into
service. Each birthday was matched with a number from 1 to 366 drawn from
a barrel. The lowest numbers were drafted first. For an interesting discussion
of statistical questions about this lottery see Fienberg [18] and Starr [46].2

The data and information about the lottery is available from the Selective
Service System web site3. We converted it into a tab delimited file, which can
be read into an R data frame by

> draftnums = read.table("draft-lottery.txt", header=TRUE)

This data frame is a table that contains the lottery numbers by day and
month. The names of the variables are

> names(draftnums)

[1] "Day" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul"

[9] "Aug" "Sep" "Oct" "Nov" "Dec"
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Fig. 2.11 Time plot of mean annual temperatures in New Haven, Connecticut. A
horizontal reference line is added to identify the grand mean and a smooth curve is
added using lowess.

2 http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
3 http://www.sss.gov/LOTTER8.HTM

http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
http://www.sss.gov/LOTTER8.HTM
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Fig. 2.12 Time plot of first differences of mean annual temperatures in New Haven,
Connecticut. A smooth curve is added using lowess.

To find the draft number for a January 15 birthday, for example, we read the
15th observation of column “Jan”,

> draftnums$Jan[15]

[1] 17

and find that the corresponding draft number is 17.
Assuming the numbers were drawn randomly, we might expect that the

medians of draft numbers for each month were near the number 366/2 = 183.
To display a table of medians for the draft numbers by month we “apply” the
median function to the months (columns). The sapply function is a ‘user-
friendly’ version of apply. However, by default the median function returns
a missing value if there are missing values in the data.

> months = draftnums[2:13]

> sapply(months, median)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

211 NA 256 NA 226 NA 188 145 NA 201 NA 100

Rx 2.4 The syntax draftnums[2:13] extracts the second through thirteenth
variable from the data frame draftnums. It would be equivalent to use the
syntax draftnums[, 2:13] or draftnums[, -1].

Our data has missing values for months with less than 31 days, so we
use na.rm=TRUE in the median function. In sapply, the extra argument to
median is simply listed after the name of the function.
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> sapply(months, median, na.rm=TRUE)

Jan Feb Mar Apr May Jun Jul Aug Sep

211.0 210.0 256.0 225.0 226.0 207.5 188.0 145.0 168.0

Oct Nov Dec

201.0 131.5 100.0

The sample medians by month are less uniformly near 183 than one might
expect by chance. A time plot of the medians by month can be obtained as
follows.

> medians = sapply(months, median, na.rm=TRUE)

> plot(medians, type="b", xlab="month number")

In this plot we used type="b" to obtain both points and lines, and added
a descriptive label “month number” on the horizontal axis. The plot (Figure
2.13) reveals an overall decreasing trend by month.
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Fig. 2.13 Medians of 1970 draft lottery numbers by month of birthday.

Rx 2.5 The result of sapply in Example 2.5 is a vector of medians in the
order of the columns (months) January, . . . , December. Then Figure 2.13 is a
plot of a vector of data. When the plot function is used with a single variable,
a time plot of the data is displayed, with an index variable shown along the
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horizontal axis. The index values 1 through 12 in this case correspond to the
month numbers.

A boxplot by months of the draft numbers is helpful for comparing the
distributions of numbers for birthdays in different months.

> months = draftnums[2:13]

> boxplot(months)

The parallel boxplots shown in Figure 2.14 look less uniformly distributed
across months than we might expect due to chance. The December birthdays
appear to have lower draft numbers than birthdays in some other months. In
fact, the numbers in the last two months of the year seem to be lower than
other months overall. For a possible explanation, more draft lottery data, and
further discussion of the lottery, see Starr [46] and “The Vietnam Lotteries”
at http://www.sss.gov/lotter1.htm.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0
10

0
20

0
30

0

Fig. 2.14 Boxplots comparing 1970 draft lottery numbers by month of birthday.

http://www.sss.gov/lotter1.htm
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2.6 Sample Means and the Central Limit Theorem

Example 2.6 (Sample means). The data frame randu contains 400 triples of
successive random numbers that were generated using an algorithm called
RANDU. In this example we investigate the distribution of the sample mean
of each triple of numbers. We know that if the numbers are truly from a
continuous Uniform(0, 1) distribution, their expected value is 1/2 and the
variance is 1/12 = 0.08333. First let us compute some basic sample statistics.

> mean(randu)

x y z

0.5264293 0.4860531 0.4809547

> var(randu)

x y z

x 0.081231885 -0.004057683 0.004637656

y -0.004057683 0.086270206 -0.005148432

z 0.004637656 -0.005148432 0.077860433

Here, because randu is a data frame with three variables, the means are
reported separately for each of the three variables, and the var function
computes a variance-covariance matrix for the three variables. Each of the
three sample means is close to the uniform mean 1/2. The diagonal of the
variance-covariance matrix has the three sample variances, which should be
close to 0.08333 under the assumption that RANDU generates Uniform(0, 1)
data.

> diag(var(randu))

x y z

0.08123189 0.08627021 0.07786043

The off-diagonal elements in the variance-covariance matrix are the sample
covariance, and theoretically the covariances should be zero: the numbers
in columns x, y, and z should be uncorrelated if in fact the RANDU table
represents independent and identically distributed (iid) numbers. The sample
correlations are each close to zero in absolute value:

> cor(randu)

x y z

x 1.00000000 -0.04847127 0.05831454

y -0.04847127 1.00000000 -0.06281830

z 0.05831454 -0.06281830 1.00000000

Remark 2.1. Although the randu data (x,y,z) have correlations close to zero,
in fact there is a linear relation that can be observed if we view the data in
a 3-D plot. Try displaying the following plot to see that a pattern can be
observed in the data (it is not quite random).

library(lattice)
cloud(z ~ x + y, data=randu)
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See Chapter 4 for the plot (Figure 4.19, page 125) and further discussion of
the cloud function.

We are interested in the distribution of the row means. Each row is assumed
to be a random sample of size 3 from the Uniform(0,1) distribution. We can
extract the row means using apply:

> means = apply(randu, MARGIN=1, FUN=mean)

Here MARGIN=1 specifies rows and FUN=mean names the function to be applied
to the rows. Alternately one could use

rowMeans(randu)

to obtain the vector of means. Now means is a vector of 400 sample means.
We plot a frequency histogram of the sample means using hist.

> hist(means)

Histogram of means
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Fig. 2.15 Frequency histogram produced with the default arguments to the hist

function, for the sample means in Example 2.6.

The histogram of means shown in Figure 2.15 is mound shaped and somewhat
symmetric. According to the Central Limit Theorem, the distribution of the
sample mean tends to normal as the sample size tends to infinity. To compare
our histogram with a normal distribution, however, we need a probability
histogram, not a frequency histogram. A probability histogram (not shown)
can be displayed by

> hist(means, prob=TRUE)
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A density estimate can be displayed by:

> plot(density(means))

The density estimate is shown in Figure 2.16. It looks somewhat bell-shaped
like a normal distribution.
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Fig. 2.16 Density estimate for the sample means in Example 2.6.

By default the truehist function in the MASS package displays a proba-
bility histogram. We show the result of truehist below in Figure 2.17. Sup-
pose we want to add a normal density to this histogram. The mean should

be 1/2 and the variance of the sample mean should be 1/12
n = 1/12

3 = 1/36.
> truehist(means)

> curve(dnorm(x, 1/2, sd=sqrt(1/36)), add=TRUE)

From the histogram and normal density shown in Figure 2.17 one can observe
that the distribution of sample means is approaching normality even with a
sample size as small as three.

A normal-QQ plot compares the quantiles of a normal distribution with
sample quantiles. When the sampled population is normal, the QQ plot
should be close to a straight line. The plot and reference line are obtained by

> qqnorm(means)

> qqline(means)

The normal-QQ plot in Figure 2.18 is consistent with an approximately
normal distribution of sample means.
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Fig. 2.17 Histogram produced with truehist in MASS package for the sample means
in Example 2.6. The normal density is added with curve.

2.7 Special Topics

2.7.1 Adding a new variable

Example 2.7 (mammals, cont.). In Example 2.1, suppose that we wish to
create two categories of mammals, large and small. Say a mammal is “large”
if body weight is above the median. A factor variable can be added to the
data frame to indicate whether the mammal’s body weight is above or below
the median. We compute the median body size and use the ifelse function
to assign “large” or “small” levels.

> m = median(mammals$body)

> mammals$size = ifelse(mammals$body >= m, "large", "small")

It is easy to understand ifelse; if the condition is true it returns the first
value “large” and otherwise the second value “small”.

Rx 2.6 The code

mammals$size = ifelse(mammals$body >=m, "large", "small")

assigns the “large” or “small” values to the variable size in the mammals data
frame. Since the variable size does not yet exist in this data frame, a new
variable size is created in this data frame.

We use head to display the first six rows of the data frame:



2.7 Special Topics 69

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Fig. 2.18 Normal-QQ plot of the sample means in Example 2.6.

> head(mammals)

body brain size

Arctic fox 3.385 44.5 large

Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Cow 465.000 423.0 large

Grey wolf 36.330 119.5 large

Goat 27.660 115.0 large

The new variable size makes it easy to carry out an analysis for the data
separately for large and small mammals. For example,

subset(mammals, size=="large")

will return a data frame containing the large mammals only. The == operator
is logical equality, not assignment.

2.7.2 Which observation is the maximum?

The variables body and brain can be referenced by mammals$body and
mammals$brain. We can identify observation numbers using the which func-
tion. For example, here we identify the largest animals.

> which(mammals$body > 2000)

[1] 19 33

> mammals[c(19, 33), ]
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body brain size

Asian elephant 2547 4603 large

African elephant 6654 5712 large

The which function returned the row numbers of the mammals for which
mammals$body > 2000 is TRUE. Then we extracted these two rows from the
data frame.

The maximum body size is

> max(mammals$body)

[1] 6654

Suppose that we want to identify the animal with the maximum body size,
rather than the maximum value. A function that can be used to identify the
largest mammal is which.max. It returns the index of the maximum, rather
than the value of the maximum. The which.min function returns the index
of the minimum. We can then use the results to extract the observations with
the maximum or the minimum body size.

> which.max(mammals$body)

[1] 33

> mammals[33, ]

body brain size

African elephant 6654 5712 large

> which.min(mammals$body)

[1] 14

> mammals[14, ]

body brain size

Lesser short-tailed shrew 0.005 0.14 small

The African elephant has the greatest body size of 6654 kg, while the lesser
short-tailed shrew has the smallest body size (0.005 kg) in this data set.

2.7.3 Sorting a data frame

Example 2.8 (Sorting mammals). Clearly the mammals are not listed in order
of increasing body size. We could sort or rank the body size variable, but
these functions do not help us to order the entire data frame according to
body size. To list the mammals in a particular order, we first obtain the
ordering using the order function. The order function will return a sequence
of integers that sorts the data in the required order. To see how this works,
let us take a small subset of the mammals data.

> x = mammals[1:5, ] #the first five

> x

body brain size

Arctic fox 3.385 44.5 large
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Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Cow 465.000 423.0 large

Grey wolf 36.330 119.5 large

We want to sort the observations by body size.

> o = order(x$body)

> o

[1] 2 3 1 5 4

The result of order saved in the vector o indicates that in order of increasing
body size we require observations 2, 3, 1, 5, 4. Finally using the result from
order we re-index the data. We use the [row, column] syntax with o for
the row and leave the column blank to indicate that we want all columns.

> x[o, ]

body brain size

Owl monkey 0.480 15.5 small

Mountain beaver 1.350 8.1 small

Arctic fox 3.385 44.5 large

Grey wolf 36.330 119.5 large

Cow 465.000 423.0 large

The code to sort the full mammals data frame by body size is similar:

> o = order(mammals$body)

> sorted.data = mammals[o, ]

We display the last three observations of the sorted data frame using tail,
and find the three largest body sizes with their corresponding brain sizes.

> tail(sorted.data, 3)

body brain size

Giraffe 529 680 large

Asian elephant 2547 4603 large

African elephant 6654 5712 large

2.7.4 Distances between points

In this section we discuss the dist function for computing distances between
points. We return to the mammals data introduced in Example 2.1 and con-
tinued in Examples 2.7-2.8, which contains body size and brain size of 62
mammals and a categorical variable size that we created in Example 2.7.

Example 2.9 (Distances between points). The original mammals data (body,
brain) is an example of a bivariate (two-dimensional) data set. Distances
between observations are defined only for numeric variables, so we begin by
first reloading the data to restore the mammals data frame to its original form.

> data(mammals)
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Suppose that we are interested in annotating the plot in Figure 2.2(b) with
line segments representing the distances between some of the observations.
The Euclidean distance between points x = (x1, . . . ,xd) and y = (y1, . . . ,yd)
in a d-dimensional space is given by

‖x−y‖ =

√√√√ d∑
k=1

(xk −yk)2.

In two dimensions, as we have here, the distance is just the length of the line
segment connecting the two points (the length of the hypotenuse of a right
triangle). The distance matrix of a sample contains the distance between the
ith and jth observation in row i, column j. A triangular table of distances is
returned by dist; because the distance matrix is symmetric with zeroes on
the diagonal, the dist object stores and displays it in a compact way. We
illustrate with a small subset of mammals.

> x = mammals[1:5, ]

> dist(x)

Arctic fox Owl monkey Mountain beaver Cow

Owl monkey 29.145137

Mountain beaver 36.456841 7.450966

Cow 596.951136 617.928054 622.184324

Grey wolf 81.916867 110.005557 116.762838 525.233490

By default, the dist function returns Euclidean distances, but dist can
optionally compute other types of distances as specified by the method argu-
ment.

For many applications, we require the full distance matrix. The as.matrix
function converts a distance object to a matrix.

> as.matrix(dist(x))

Arctic fox Owl monkey Mountain beaver Cow Grey wolf

Arctic fox 0.00000 29.145137 36.456841 596.9511 81.91687

Owl monkey 29.14514 0.000000 7.450966 617.9281 110.00556

Mountain beaver 36.45684 7.450966 0.000000 622.1843 116.76284

Cow 596.95114 617.928054 622.184324 0.0000 525.23349

Grey wolf 81.91687 110.005557 116.762838 525.2335 0.00000

The scatterplot for the full mammals data frame (Figure 2.19) was created
with this command:

> plot(log(mammals$body), log(mammals$brain),

+ xlab="log(body)", ylab="log(brain)")

Next, to display a few of the distances, we add line segments correspond-
ing to the distances (cow, wolf), (wolf, human) and (cow, human). First we
extract these three observations from mammals and store them in y. The three
points form a triangle, so it is easy to draw the segments between them using
polygon.
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> y = log(mammals[c("Grey wolf", "Cow", "Human"), ])

> polygon(y)

(To add the segments one at a time, one could use the segments function.)
Labels are added using text. The labels will be centered at coordinates of
the points in y if we use:

text(y, rownames(y))

The placement of the text labels can be adjusted. Here we used

> text(y, rownames(y), adj=c(1, .5))

for better placement of the labels. Also see Example 4.2 for an interactive
method of labeling points using the identify function.

From the plot shown in Figure 2.19 we see that if measuring by the Eu-
clidean distances of logarithms of brain and body size, humans are somewhat
closer to cows than to wolves. The actual distances are

> dist(y)

Grey wolf Cow

Cow 2.845566

Human 2.460818 2.314068

2.7.5 Quick look at cluster analysis

Example 2.10 (Cluster analysis of distances). Distance matrices are often
computed for cluster analysis. Cluster analysis is often applied to reveal pos-
sible structure in data. Although an in depth discussion of cluster analysis is
beyond the scope of this book, in this section we take a quick look at how to
implement a simple cluster analysis. A function that implements hierarchical
cluster analysis is hclust. For example,

> d = dist(log(mammals))

> h = hclust(d, method="complete")

performs a hierarchical cluster analysis based on furthest neighbors. Using
method="complete", beginning with the singletons (individual observations),
the two clusters with the smallest maximum pairwise distance are joined
at each step. Clearly the distances in Figure 2.19 show that “cow” is not
the nearest point to “cat” or to “human”. Another widely applied method is
Ward’s minimum variance, obtained with the squared distance matrix and
method=ward in hclust. Several other popular clustering methods are also
implemented in hclust. A good reference on hierarchical cluster analysis is
Everitt, Landau, and Leese [15].

In this example we will work with the largest half of the mammals. We
extract the larger half by the subset function:

> big = subset(mammals, subset=(body > median(body)))
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Fig. 2.19 Scatterplot with distances between three of the mammals labeled in Ex-
ample 2.1.

Then we compute distances and the clustering for the large animals:

> d = dist(log(big))

> h = hclust(d, method="complete")

The result of hclust can be plotted in a tree diagram called a dendrogram.

> plot(h)

The dendrogram is shown in Figure 2.20. The lowest branches to be clustered
are the“nearest”according to this algorithm, while nodes that join at a higher
level are less alike. For example, we see that the two elephants cluster together
early, but are not joined with other clusters until much later. Note that this
analysis is based entirely on brain and body sizes, so clusters represent relative
size of the animal in some sense.

Let’s see which pair of animals are the closest according to this clustering
algorithm (the first pair to be merged into a cluster). That would be the pair
with the smallest distance. That pair will be identified by the values returned
in h$merge.
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> head(h$merge)

[,1] [,2]

[1,] -22 -28

[2,] -25 -57

[3,] -21 -29

[4,] -8 -12

[5,] -9 -62

[6,] -41 -60

We see that the logarithms of the 22nd and 28th observations have the small-
est distance and therefore were the first cluster formed. These observations
are:

> rownames(mammals)[c(22, 28)]

[1] "Horse" "Giraffe"

and their logarithms are

> log(mammals)[c(22, 28), ]

body brain

Horse 6.255750 6.484635

Giraffe 6.270988 6.522093

Note that the cluster analysis will be different if the distances are computed
on the original mammals data rather than the logarithms of the data, or if a
different clustering algorithm is applied.

Exercises

2.1 (chickwts data). The chickwts data are collected from an experiment
to compare the effectiveness of various feed supplements on the growth rate
of chickens (see ?chickwts). The variables are weight gained by the chicks,
and type of feed, a factor. Display side-by-side boxplots of the weights for
the six different types of feeds, and interpret.

2.2 (iris data). The iris data gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for
50 flowers from each of three species of iris. There are four numeric variables
corresponding to the sepal and petal measurements and one factor, Species.
Display a table of means by Species (means should be computed separately
for each of the three Species).

2.3 (mtcars data). Display the mtcars data included with R and read the
documentation using ?mtcars. Display parallel boxplots of the quantitative
variables. Display a pairs plot of the quantitative variables. Does the pairs
plot reveal any possible relations between the variables?

2.4 (mammals data). Refer to Example 2.7. Create a new variable r equal
to the ratio of brain size over body size. Using the full mammals data set, order
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Fig. 2.20 Cluster dendrogram of log(mammals) data by nearest neighbor method
in Example 2.1.

the mammals data by the ratio r. Which mammals have the largest ratios of
brain size to body size? Which mammals have the smallest ratios? (Hint: use
head and tail on the ordered data.)

2.5 (mammals data, continued). Refer to Exercise 2.5. Construct a scat-
terplot of the ratio r = brain/body vs body size for the full mammals data
set.

2.6 (LakeHuron data). The LakeHuron data contains annual measure-
ments of the level, in feet, of Lake Huron from 1875 through 1972. Display a
time plot of the data. Does the average level of the lake appear to be stable
or changing with respect to time? Refer to Example 2.4 for a possible method
of transforming this series so that the mean is stable, and plot the resulting
series. Does the transformation help to stabilize the mean?
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2.7 (Central Limit Theorem with simulated data). Refer to Example
2.6, where we computed sample means for each row of the randu data frame.
Repeat the analysis, but instead of randu, create a matrix of random numbers
using runif.

2.8 (Central Limit Theorem, continued). Refer to Example 2.6 and Ex-
ercise 2.7, where we computed sample means for each row of the data frame.
Repeat the analysis in Exercise 2.7, but instead of sample size 3 generate a
matrix that is 400 by 10 (sample size 10). Compare the histogram for sample
size 3 and sample size 10. What does the Central Limit Theorem tell us about
the distribution of the mean as sample size increases?

2.9 (1970 Vietnam draft lottery). What are some possible explanations
for the apparent non-random patterns in the 1970 draft lottery numbers in
Example 2.5? (See the references.)

2.10 (“Old Faithful” histogram). Use hist to display a probability his-
togram of the waiting times for the Old Faithful geyser in the faithful data
set (see Example A.3). (Use the argument prob=TRUE or freq=FALSE.)

2.11 (“Old Faithful” density estimate). Use hist to display a probability
histogram of the waiting times for the Old Faithful geyser in the faithful data
set (see Example A.3) and add a density estimate using lines.

2.12 (Ordering the mammals data by brain size). Refer to Example
2.1. Using the full mammals data set, order the data by brain size. Which
mammals have the largest brain sizes? Which mammals have the smallest
brain sizes?

2.13 (mammals data on original scale). Refer to the mammals data in
Example 2.7. Construct a scatterplot like Figure 2.19 on the original scale
(Figure 2.19 is on the log-log scale.) Label the points and distances for cat,
cow, and human. In this example, which plot is easier to interpret?

2.14 (mammals cluster analysis). Refer to Example 2.10. Repeat the
cluster analysis using Ward’s minimum variance method instead of near-
est neighbor (complete) linkage. Ward’s method is implemented in hclust

with method="ward" when the first argument is the squared distance matrix.
Display a dendrogram and compare the result with the dendrogram for the
nearest neighbor method.

2.15 (Identifying groups or clusters). After cluster analysis, one is often
interested in identifying groups or clusters in the data. In a hierarchical cluster
analysis such as in Example 2.10, this corresponds to cutting the dendrogram
(e.g. Figure 2.20) at a given level. The cutree function is an easy way to find
the corresponding groups. For example, in Example 2.10, we saved the result
of our complete-linkage clustering in an object h. To cut the tree to form five
groups we use cutree with k=5:
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g = cutree(h, 5)

Display g to see the labels of each observation. Summarize the group sizes
using table(g). There are three clusters that have only one mammal. Use
mammals[g > 2] to identify which three mammals are singleton clusters.


	Chapter 2 Quantitative Data
	2.1 Introduction
	2.2 Bivariate Data: Two Quantitative Variables
	2.2.1 Exploring the data
	Body and brain size of mammals
	2.1 In the display above it is not obvious whether mammals is a matrix
	Some basic statistics and plots
	2.2 We have seen that mammals consists of two numeric variables, body

	2.2.2 Correlation and regression line
	2.3 A fitted line was added to the scatterplot in Figure 2.3 by the code

	2.2.3 Analysis of bivariate data by group
	IQ of twins

	2.2.4 Conditional plots

	2.3 Multivariate Data: Several Quantitative Variables
	2.3.1 Exploring the data
	2.3.2 Missing values
	2.3.3 Summarize by group
	2.3.4 Summarize pairs of variables
	2.3.5 Identifying missing values

	2.4 Time Series Data
	2.5 Integer Data: Draft Lottery
	2.6 Sample Means and the Central Limit Theorem
	2.7 Special Topics
	2.7.1 Adding a new variable
	2.7.2 Which observation is the maximum?
	2.7.3 Sorting a data frame
	2.7.4 Distances between points
	2.7.5 Quick look at cluster analysis

	Exercises


