
Chapter 5

Exploratory Data Analysis

5.1 Introduction

Exploratory data analysis is the process by which a person manipulates data
with the goal of learning about general patterns or tendencies and finding
specific occurrences that deviate from the general patterns. Much like a de-
tective explores a crime scene, collects evidence and draws conclusions, a
statistician explores data using graphical displays and suitable summaries to
draw conclusions about the main message of the data.

John Tukey and other statisticians have devised a collection of methods
helpful in exploring data. Although the specific data analysis techniques are
useful, exploratory data analysis is more than the methods – it represents
an attitude or philosophy about how data should be explored. Tukey makes
a clear distinction between confirmatory data analysis, where one is primar-
ily interested in drawing inferential conclusions, and exploratory methods,
where one is placing few assumptions on the distributional shape of the data
and simply looking for interesting patterns. Good references on exploratory
methods are Tukey [47] and Hoaglin et al. [22].

There are four general themes of exploratory data analysis, namely Rev-
elation, Resistance, Residuals, and Reexpression, collectively called the four
R’s. There is a focus on revelation, the use of suitable graphical displays in
looking for patterns in data. It is desirable to use resistant methods – these
methods are relatively insensitive to extreme observations that deviate from
the general patterns. When we fit simple models such as a line, often the
main message is not the fitted line, but rather the residuals, the deviations
of the data from the line. By looking at residuals, we often learn about data
patterns that are difficult to see by the initial data displays. Last, in many
situations, it can be difficult to see patterns due to the particular measuring
scale of the data. Often there is a need to reexpress or change the scale of the
data. Well-chosen reexpressions, such as a log or square root, make it easier
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134 5 Exploratory Data Analysis

to see general patterns and find suitable data summaries. In the following
example, we illustrate each of the four “R themes” in exploratory work.

5.2 Meet the Data

Example 5.1 (Ratings of colleges).
It can be difficult for an American high school student to choose a college.

To help in this college selection process, U.S. News and World Report (http:
//www.usnews.com) prepares a yearly guide America’s Best Colleges. The
2009 guide ranks all of the colleges in the United States with respect to a
number of different criteria. The dataset college.txt contains data in the
guide collected from a group of “National Universities.” These are schools in
the United States that offer a range of degrees both at the undergraduate
and graduate levels. The following variables are collected for each college:

a. School – the name of the college
b. Tier – the rank of the college into one of four tiers
c. Retention – the percentage of freshmen who return to the school the fol-

lowing year
d. Grad.rate – the percentage of freshman who graduate in a period of six

years
e. Pct.20 – the percentage of classes with 20 or fewer students
f. Pct.50 – the percentage of classes with 50 or more students
g. Full.time – the percentage of faculty who are hired full-time
h. Top.10 – the percentage of incoming students who were in the top ten

percent of their high school class
i. Accept.rate – the acceptance rate of students who apply to the college
j. Alumni.giving – the percentage of alumni from the college who contribute
financially

We begin by loading the dataset into R using the function read.table

and saving it in the data frame dat. Note that the sep argument indicates
there are tabs separating the columns in the data file.

> dat = read.table("college.txt", header=TRUE, sep="\t")

There are some colleges where not all of the data were collected. The R
function complete.cases will identify the colleges where all of the variables
have been collected and the subset function is used to create a new data
frame college containing only the colleges with “complete” data.

> college = subset(dat, complete.cases(dat))

http://www.usnews.com
http://www.usnews.com
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5.3 Comparing Distributions

One measure of the quality of a college is the variable Retention, the per-
centage of freshmen who return to the college the following year. We wish to
display the distribution of the retention rates and compare the distribution
of rates across different college subgroups.

5.3.1 Stripcharts

One basic graph of the retention rates is a stripchart or one-dimensional
scatterplot constructed using the stripchart function. Using the method =

"stack" option, the dots in the graph will be stacked, and the option pch =

19 will use solid dots as the plotting character.

> stripchart(college$Retention, method="stack", pch=19,

+ xlab="Retention Percentage")
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Fig. 5.1 Stripchart of the retention percentages of all National universities.

From Figure 5.1, we see much variability in the retention rates from 55%
to near 100% and wonder which variables are helpful in explaining this vari-
ation. One of the general measures of a school’s quality is its Tier (either
1, 2, 3, or 4) and a next step might be to construct parallel stripcharts of
the retention rates by Tier. This graph is constructed by a slight variation of
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stripchart – the argument Retention ∼ Tier indicates that we wish sepa-
rate displays of retention for each of the four tiers. Note that we don’t use the
college$Retention syntax, since we have indicated by the data=college

argument that the data frame college is being used.

> stripchart(Retention ~ Tier, method="stack", pch=19,

+ xlab="Retention Percentage",

+ ylab="Tier", xlim=c(50, 100), data=college)
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Fig. 5.2 Parallel stripcharts of the retention percentages of all National universities
grouped by tier.

It is clear from Figure 5.2 that the retention percentage differs among the
four groups of colleges. For the Tier 1 schools, the percentages primarily fall
between 90 and 100; in contrast, most of the retention percentages of the Tier
4 schools fall between 65 and 80.

5.3.2 Identifying outliers

The parallel stripcharts are helpful in seeing the general distribution of reten-
tion percentages for each tier. Also from the graph, we notice a few schools
with retention percentages that seem set apart from the other colleges in the
same tier. The identify function is helpful in identifying the schools with
these unusual percentages. In this function, we give the x and y variables
of the plot, indicate by the n=2 option that we wish to identify two points,
and the labels=college$School option indicates that we wish to label the
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points by the school names. When this function is executed, a cross-hair will
appear over the graph and one moves the mouse and clicks at the locations
of the two outliers. At each click, the name of the school will appear next to
the plotting point. In the R console window, the row numbers of the data
frame corresponding to these two schools are displayed.

> identify(college$Retention, college$Tier, n=2,

+ labels=college$School)

[1] 158 211

We see in Figure 5.3 that the two schools with unusually small retention
percentages (relative to the other schools in the same tier) are Bridgeport in
Tier 4 and South Carolina State in Tier 3.
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Fig. 5.3 Parallel stripcharts of the retention percentages of all National universities
grouped by tier. Two outliers are identified by the school name.

5.3.3 Five-number summaries and boxplots

The parallel stripchart display shows differences in the retention percentages
among the four tiers of colleges, and a next step is to summarize these differ-
ences. A good collection of summaries of a dataset is the median, the lower
and upper quartiles, and the low and high values. This group of summaries
is called (for obvious reasons) the five-number summary and a boxplot is a
graph of these five numbers. The boxplot function will compute five-number
summaries for each group and display parallel boxplots (see Figure 5.4). As



138 5 Exploratory Data Analysis

in the stripchart function, the Retention ∼ Tier formula indicates that
we wish to construct boxplots of retention by tier, and the horizontal=TRUE
argument indicates the boxplots will be displayed in a horizontal style. As
in the stripchart function, the data=college argument indicates that the
variables are part of the data frame college. The resulting boxplot display
is shown in Figure 5.4. The locations of the median retention values for the
four tiers are shown by the dark lines in the boxes, and the spreads of the
four graphs are reflected by the widths of the boxes. Using an EDA rule for
flagging outliers, the display shows four schools (indicated by separate points)
whose retention percentages are unusually small for their associated tiers.

> b.output = boxplot(Retention ~ Tier, data=college, horizontal=TRUE,

+ ylab="Tier", xlab="Retention")
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Fig. 5.4 Boxplots of the National university retention percentages grouped by Tier.

The output of boxplot has been saved to the variable b.output, a list with
the different components of the boxplot computations. One can display the
five-number summaries by the stats component of b.output:

> b.output$stats

[,1] [,2] [,3] [,4]

[1,] 90.0 79 69 62

[2,] 93.5 84 76 69

[3,] 96.0 86 79 72

[4,] 97.0 89 82 74

[5,] 99.0 93 88 79

attr(,"class")

1

"integer"
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A column of b.output$stats corresponds to the five-number summary of
the retention rates for a particular tier. We see the five-number summaries of
tiers 3 and 4 are respectively (69, 76, 79, 82, 88) and (62, 69, 72, 74, 79). One
can measure the spread of the two groups of data by the quartile spread, the
distance between the two quartiles. The quartile spread of the retentions for
Tier 3 schools is 82 − 76 = 6 and the quartile spread of the Tier 4 schools is
74−69 = 5. Since the spreads of the two groups are similar, one can compare
the medians – the median for the Tier 3 retentions is 79 and the median for
the Tier 4 retentions is 72. We observe that the retention percentages tend
to be 79 − 72 = 7 points higher for Tier 3 than for Tier 4. In addition to the
five-number summaries, information about the outliers is also stored. The
out and group components of b.output give the outlying values and their
corresponding groups.

> b.output$out

[1] 88 65 61 61 54

> b.output$group

[1] 1 3 4 4 4

From Figure 5.4, there were two visible outliers in tier 4, but the output
indicates that there are actually three outliers in this tier, corresponding to
retention percentages of 54, 61, and 61.

5.4 Relationships Between Variables

5.4.1 Scatterplot and a resistant line

Since it is reasonable to believe a school’s first-year retention percentage will
affect its graduation percentage, we next look at the relationship between the
variables Retention and Grad.rate. Using the plot function, we construct
a scatterplot and the resulting graph is shown in Figure 5.5. As expected,
we see a strong positive association between first-year retention rate and the
graduation rate.

> plot(college$Retention, college$Grad.rate,

+ xlab="Retention", ylab="Graduation Rate")

For exploratory work, it is useful to fit a line that is resistant or not sensitive
to outlying points. One fitting method of this type is Tukey’s “resistant line”
implemented by the function line. Essentially, the resistant line procedure
divides the scatterplot into left, middle, and right regions, computes resistant
summary points for each region, and finds a line from the summary points.
We fit this resistant line to these data and the fitting calculations are stored
in the variable fit. In particular, the coefficients of the fitted line are stored
in fit$coef:
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> fit = line(college$Retention, college$Grad.rate)

> coef(fit)

[1] -83.631579 1.789474

The fitted line is given by

GraduationRate = −83.63+1.79×RetentionRate.

The slope of this line is 1.79 – for every one percent increase in the reten-
tion rate, the average graduation rate increases by 1.79%. The line on the
scatterplot is added by the abline function in Figure 5.5.

> abline(coef(fit))
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Fig. 5.5 scatterplot of the graduation rates and retention rates for the National
universities. A resistant best-fitting line is placed on top of the graph.

5.4.2 Plotting residuals and identifying outliers

In exploratory work, we wish to look beyond the obvious relationship between
retention and graduation rates by examining schools deviating from the gen-
eral straight-line pattern. We look further by considering the residuals, the
differences between the actual graduation rates and the values predicted from
the fitted resistant line. The set of residuals are stored in the list element
fit$residuals and the plot function is used to construct a scatterplot of
residuals against the retention rates in Figure 5.6. A horizontal line at zero
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is added using abline to help in interpreting this plot. Positive residual val-
ues correspond to observed graduation rates that are larger than the values
predicted from the straight-line relation, and negative residuals correspond
to graduate rates smaller than the predicted rates.

> plot(college$Retention, fit$residuals,

+ xlab="Retention", ylab="Residual")

> abline(h=0)

We learn some new things from inspecting this residual plot. There is a fan-
shaped appearance in the graph, indicating that the spread of the residuals
is higher for low retention schools than for high retention schools. Most of
the residuals fall between −20 and 20 percentage points, indicating that the
observed and predicted graduation rates fall within 20 points for most schools.
We do notice two unusually large residuals, and we identify and label these
residuals using the identify function.

> identify(college$Retention, fit$residuals, n=2,

+ labels=college$School)

When this function is executed, a crosshair will appear on the graph. One
clicks at the locations of the two large residuals and the names of the schools
appear next to the plotting points. (See Figure 5.6.) The two large residuals
correspond to the schools Bridgeport and New Orleans. Although Bridgeport
has a relatively low retention percentage, it has a large positive residual which
indicates that its graduation percentage is large given its retention percent-
age. Perhaps Bridgeport’s actual retention percentage is higher than what
was recorded in this dataset. In contrast, New Orleans has a large negative
residual. This school’s graduation percentage is lower than one would predict
from its retention percentage. This suggests that another variable (a so-called
lurking variable) may explain New Orleans’ low graduation percentage.

5.5 Time Series Data

5.5.1 Scatterplot, least-squares line, and residuals

Example 5.2 (Enrollment growth at a university).
Bowling Green State University celebrated its centennial in 2010 and it

published online its enrollment counts for the years 1914 through 2008. The
dataset “bgsu.txt” contains the enrollment counts for the significant growth
years 1955 through 1970. We read in the dataset and use the plot function
to construct a scatterplot of Enrollment against Year. (See Figure 5.7.)

> bgsu = read.table("bgsu.txt", header=TRUE, sep="\t")

> plot(bgsu$Year, bgsu$Enrollment}



142 5 Exploratory Data Analysis

●

●
●

●

●●
●

●
●

●

●●
●

●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

60 70 80 90 100

−
20

−
10

0
10

20

Retention

R
es

id
ua

l

Bridgeport

New Orleans

Fig. 5.6 Plot of the residuals of a resistant fit to the graduation percentages by the
retention percentages for the National universities. Two unusually large residuals are
labeled with the corresponding college name.
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Fig. 5.7 scatterplot of BGSU enrollment against year for the growth period 1955 to
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To help us understand the pattern of growth of enrollment, we fit a line.
The lm function is used to fit a least-squares line with the calculations stored
in the variable fit. The fitted line is placed on the scatterplot using the
abline function with the argument fit. The vector of residuals is stored in
the component residuals of fit and the plot function is used to construct
a scatterplot of the residuals against year. The abline function is used with
the h=0 argument to add a horizontal line at zero to the residual plot. Figure
5.8 shows the two plots.

> fit = lm(Enrollment ~ Year, data=bgsu)

> abline(fit)

> plot(bgsu$Year, fit$residuals)

> abline(h=0)
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Fig. 5.8 Least-squares fit to enrollment data (a) and residual plot (b). There is a clear
curvature pattern to the residuals, indicating that the enrollment is not increasing in
a linear fashion.

Looking at the residual graph, there is a clear curvature pattern in the resid-
uals, indicating that BGSU’s enrollment is not increasing in a linear way. An
alternative model may better describe the enrollment growth.

5.5.2 Transforming by a logarithm and fitting a line

Suppose instead that the BGSU enrollment is increasing exponentially. This
means that, for some constants a and b, the enrollment follows the relationship

Enrollment = aexp(bY ear).
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If we take the logarithm of both sides of the equation, we obtain the equivalent
linear relationship between the log of enrollment and year

logEnrollment = loga+ bY ear.

We can find suitable constants a and b by fitting a line to the (Year,
log Enrollment) data. In the following R code, we define a new variable
log.Enrollment containing the log enrollment values.

> bgsu$log.Enrollment = log(bgsu$Enrollment)

Rx 5.1 The syntax bgsu$log.Enrollment on the left side of the assignment
creates a new variable log.Enrollment in the bgsu data frame. The loga-
rithm of enrollment is then assigned to this new variable.

We construct a scatterplot of the reexpressed data against year, and use the
lm function to fit a line to these data. Figure 5.9 displays the least-squares fit
to the log enrollment data, and plots the corresponding residuals. Generally,
it seems that a linear pattern is a closer fit to the log enrollment than for the
enrollment. Looking at the residual graph, there is a “high, low, high, low”
pattern in the residuals as one looks from left from right, but we do not see
the strong curvature pattern that we saw in the residuals from the linear fit
to the enrollment.

> plot(bgsu$Year, bgsu$log.Enrollment)

> fit2 = lm(log.Enrollment ~ Year, data=bgsu)

> fit2$coef

(Intercept) Year

-153.25703366 0.08268126

> abline(fit2)

> plot(bgsu$Year, fit2$residuals)

> abline(h=0)

From the R output, we see that the least-squares fit to the log enrollment
data is

logEnrollment = −153.257+0.0827Y ear.

This is equivalent to the exponential fit

Enrollment = exp(−153.257+0.0827Y ear) ∝ (1.086)Y ear,

where ∝ means “is proportional to.” We see that BGSU’s enrollment was
increasing approximately 8.6% a year during the period between 1955 and
1970.
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Fig. 5.9 Least-squares fit to the log enrollment data (a) and the residual plot (b).
Since there is no strong curvature pattern in the residuals, a linear fit seems more
appropriate for the log enrollment than for the enrollment.

5.6 Exploring Fraction Data

5.6.1 Stemplot

Example 5.3 (Ratings of colleges (continued)).
One measure of quality of a university is the percentage of incoming stu-

dents who graduated in the top ten percent of their high school class. Suppose
we focus our attention at the “Top Ten” percentages for the Tier 1 colleges.
We first use the subset function to extract the Tier 1 schools and put them
in a new data frame college1:

> college1 = subset(college, Tier==1)

A stemplot of the percentages can be produced using the stem function.

> stem(college1$Top.10)

4 | 3

5 | 589

6 | 344468

7 | 355599

8 | 02445556777888

9 | 00223334566677777889

10 | 0
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5.6.2 Transforming fraction data

Since the percentages are left-skewed with a cluster of values in the 90’s, it is
a little difficult to summarize and hard to distinguish the schools with high
percentages of “top ten” students. This suggests that we might be able to
improve the display by an appropriate reexpression. For percentage data or
equivalently fraction data that are piled up at the extreme values of 0 and 1,
Tukey suggests the use of several reexpressions. The folded fraction is defined
by

ff = f − (1−f).

This reexpression expands the scale from the interval (0, 1) to the interval
(−1,1); a fraction f = 0.5 is a folded fraction of ff = 0. The folded root or
froot is defined as

froot =
√

f −
√

1−f

and the folded log or flog is defined as

flog = log(f)− log(1−f).

Figure 5.10 displays the values of these reexpression for particular values of
the fraction f . This figure was created using the following R code:

f = c(0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95)

ff = f - (1 - f)

froot = sqrt(2 * f) - sqrt(2 * (1 - f))

flog = 1.15 * log10(f) - 1.15 * log10(1 - f)

D = data.frame(f, ff, froot, flog)

matplot(t(as.matrix(D)), 1:4, type="l", lty=1, lwd=1,

xlab="FRACTION", ylab="TRANSFORMATION",

xlim=c(-1.8, 2), ylim=c(0.5, 4.3))

matplot(t(as.matrix(D[c(1, 4, 7), ])),

1:4, type="l", lwd=3, lty=1, add=TRUE)

lines(D[c(1, 7), 1], c(1, 1), lwd=2)

lines(D[c(1, 7) ,2], 2 * c(1, 1), lwd=2)

lines(D[c(1, 7), 3], 3 * c(1, 1), lwd=2)

lines(D[c(1, 7), 4], 4 * c(1, 1), lwd=2)

text(c(1.8, 1.5, 1.3, 1.3, 0, 0.5 ,1),

c(4, 3, 2, 1, 0.8, 0.8, 0.8),

c("flog", "froot", "ff", "f", "f=.05", "f=.5", "f=.95"))

Figure 5.10 illustrates several desirable properties of these reexpressions.
First, they are symmetric reexpressions in the sense that the ff or froot or
flog of f will be the negative of the ff or froot or flog of 1−f . Also the froot
and flog rexpressions have the effect of expanding the scale for fractions close
to 0 or 1.

We compute these reexpressions of the Top Ten percentages. To avoid
problems with computing logs at percentages of 0 and 100, a value of 0.5 is
added to the percentages of Top Ten and “not Top Ten” before the flog is
taken.
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Fig. 5.10 Display of three different reexpressions for fraction data. The bottom line
(labelled f) displays fraction values of 0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95, and the
ff, froot, and flog lines display the fractions on the folded fraction, folded root, and
folded log scales.

> froot = sqrt(college1$Top.10) - sqrt(100 - college1$Top.10)

> flog = log(college1$Top.10 + 0.5) - log(100 - college1$Top.10 + 0.5)

Stemplots of the froot and flog Top 10 percentages are displayed. Both re-
expressions have the effect of making the Top 10 percentages more symmetric
and spreading out the schools with high values.

> stem(froot}

The decimal point is at the |

-0 | 0

0 | 7139

2 | 000363777

4 | 3358223335777999

6 | 338800025888

8 | 11111559

10 | 0



148 5 Exploratory Data Analysis

> stem(flog)

The decimal point is at the |

-0 | 3

0 | 234566677

1 | 01113345667778999

2 | 000224455579

3 | 1113333377

4 | 2

5 | 3

What is the benefit of taking these strange-sounding reexpressions? On the
froot scale, the percentages are approximately symmetric, and symmetric
data has a clear “average.” On the froot scale, a typical Top Ten percentage
is 5.7. Also this reexpression can help to equalize spreads between groups,
and provide a simple comparison. To illustrate, we use the subset function
to create a data frame college34 with data from the Tier 3 and Tier 4
colleges. (The “|” symbol is the logical “or” operator; here we wish to include
colleges that are either in Tier 3 or Tier 4.) We compute froots of the Top
Ten percentages and use parallel boxplots to compare the two Tiers.

> college34 = subset(college, Tier==3 | Tier==4)

> froot = sqrt(college34$Top.10) - sqrt(100 - college34$Top.10)

> boxplot(froot ~ Tier, data=college34, horizontal=TRUE,

+ xlab="Froot(Top 10 Pct)", ylab="Tier")
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Fig. 5.11 Parallel boxplots of the froot Top 10 percentages of the Tier 3 and Tier 4
National universities.
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We see from the display in Figure 5.11 that the Top 10 percentages, on the
froot scale, have similar spreads that we measure by the quartile spread. One
can compute the medians of the Top 10 froot percentages to be respectively
−4.3 and −5.2. Therefore, on the froot scale, the Top Ten percentages for the
Tier 3 schools tend to be −4.3− (−5.2) = 0.9 higher than the Tier 4 schools.

Exercises

5.1 (Exploring percentages of small classes). The variable Pct.20 in
the college dataset contains the percentage of “small classes” (defined as 20
or fewer students) in the National Universities.

a. Construct a dotplot of the small-class percentages using the stripchart

function. To see the density of points, it is helpful to use either the
method=stack or method=jitter arguments. What is the shape of this
data?

b. There is a single school with an unusually large small-class percentage.
Use the identify function to find the name of this unusual school.

c. Find the median small-class percentage and draw a vertical line (using the
abline function) on the dotplot at the location of the median.

5.2 (Relationship between the percentages of small classes and large
classes). The variables Pct.20 and Pct.50 in the college dataset contain
respectively the percentage of “small classes” (defined as 20 or fewer students)
and the percentage of “large classes” (defined as 50 or more students) in the
National Universities.

a. Use the plot function to construct a scatterplot of Pct.20 (horizontal)
against Pct.50 (vertical).

b. Use the line function to find a resistant line to these data. Add this
resistant line to the scatterplot constructed in part a.

c. If 60% of the classes at a particular college have 20 or fewer students, use
the fitted line to predict the percentage of classes that have 50 or more
students.

d. Construct a graph of the residuals (vertical) against Pct.20 (horizontal)
and add a horizontal line at zero (using the abline function).

e. Is there a distinctive pattern to the residuals? (Compare the sizes of the
residuals for small Pct.20 and the sizes of the residuals for large Pct.50.)

f. Use the identify function to identify the schools that have residuals that
exceed 10 in absolute value. Interpret these large residuals in the context
of the problem.

5.3 (Relationship between acceptance rate and “top-ten” percent-
age). The variables Accept.rate and Top.10 in the college dataset contain
respectively the acceptance rate and the percentage of incoming students in
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the top 10 percent of their high school class in the National Universities.
One would believe that these two variables are strongly associated, since, for
example, “exclusive” colleges with small acceptance rates would be expected
to have a large percentage of “top-ten” students.

a. Explore the relationship between Accept.rate and Top.10. This explo-
ration should include a graph and linear fit that describe the basic pattern
in the relationship and a residual graph that shows how schools differ from
the basic pattern.

b. Schools are often classified into “elite” and “non-elite” colleges depending
on the type of students they admit. Based on your work in part a, is there
any evidence from Accept.rate and Top.10 that schools do indeed cluster
into “elite” and “non-elite” groups? Explain.

5.4 (Exploring the pattern of college enrollment in the United
States). The U.S. National Center for Education Statistics lists the total
enrollment at Institutions of Higher Education for years 1900-1985 at their
website http://nces.ed.gov. Define the ordered pair (x,y), where y is the
total enrollment in thousands in year x. Then we observe the data (1955,
2653), (1956, 2918), (1957, 3324), (1959, 3640), (1961, 4145), (1963, 4780),
(1964, 5280), (1965, 5921), (1966, 6390), (1967, 6912), (1968, 7513), (1969,
8005), (1970, 8581).

a. Enter this data into R.
b. Use the lm function to fit a line to the pattern of enrollment growth in

the period 1955 to 1970. By inspecting a graph of the residuals, decide if
a line is a reasonable model of the change in enrollment.

c. Transform the enrollment by a logarithm, and fit a line to the (year, log
enrollment) data. Inspect the pattern of residuals and explain why a line
is a better fit to the log enrollment data.

d. By interpreting the fit to the log enrollment data, explain how the college
enrollment is changing in this time period. How does this growth compare
to the growth of the BGSU enrollment in Section 5?

5.5 (Exploring percentages of full-time faculty). The variable Full.time
in the college dataset (see Example 5.3) contains the percentage of faculty
who are hired full-time in the group of National Universities.

a. Using the hist function, construct a histogram of the full-time percentages
and comment on the shape of the distribution.

b. Use the froot and flog transformations to reexpress the full-time percent-
ages. Construct histograms of the collection of froots and the collection of
flogs. Is either transformation successful in making the full-time percent-
ages approximately symmetric?

c. For data that is approximately normally distributed, about 68% of the
data fall within one standard deviation of the mean. Assuming you have
found a transformation in part (b) that makes the full-time percentages

http://nces.ed.gov
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approximately normal, find an interval that contains roughly 68% of the
data on the new scale.

5.6 (Exploring alumni giving rates). The variable Alumni.giving con-
tains the percentage of alumni from the college who make financial contribu-
tions.

a. Construct a “stacked” dotplot of the alumni giving percentages using the
stripchart function.

b. Identify the names of the three schools with unusually large giving per-
centages.

c. It can be difficult to summarize these giving percentages since the dis-
tribution is right-skewed. One can make the dataset more symmetric by
applying either a square root transformation or a log transformation.

roots = sqrt(college$Alumni.giving)

logs = log(college$Alumni.giving)

Apply both square root and log transformations. Which transformation
makes the alumni giving rates approximately symmetric?

5.7 (Exploring alumni giving rates (continued)). In this exercise, we
focus on the comparison of the alumni giving percentages between the four
tiers of colleges.

a. Using the stripchart function with the stacked option, construct parallel
dotplots of alumni giving by tier.

b. As one moves from Tier 4 to Tier 1, how does the average giving change?
c. As one moves from Tier 4 to Tier 1, how does the spread of the giving

rates change?
d. We note from parts (b) and (c), that small giving rates tend to have

small variation, and large giving rates tend to have large variation. One
way of removing the dependence of average with spread is to apply a
power transformation such as a square root or a log. Construct parallel
stripcharts of the square roots of the giving rates, and parallel boxplots of
the log giving rates.

e. Looking at the two sets of parallel stripcharts in part (d), were the square
root rates or the log rates successful in making the spreads approximately
the same between groups?
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