
Chapter 7

Regression

7.1 Introduction

Regression is a general statistical method to fit a straight line or other model
to data. The objective is to find a model for predicting the dependent variable
(response) given one or more independent (predictor) variables.

The simplest example is a simple linear regression model of Y on X, defined
by

Y = β0 +β1X +ε, (7.1)

where ε is a random error term. The word “simple” means that there is one
predictor variable in the model. The linear model (7.1) describes a straight
line relation between the response variable Y and predictor X.

In least squares regression the unknown parameters β0 and β1 are esti-
mated by minimizing the sum of the squared deviations between the observed
response Y and the value Ŷ predicted by the model. If these estimates are
b0 (intercept) and b1 (slope), the estimated regression line is

Ŷ = b0 + b1X.

For a set of data (xi,yi), i = 1, . . . ,n, the errors in this estimate are yi − ŷi,
i = 1, . . . ,n. Least squares regression obtains the estimated intercept b0 and
slope b1 that minimizes the sum of squared errors:

∑n
i=1(yi − ŷi)2.

A multiple linear regression model has more than one predictor variable
(multiple predictors). Linear models can describe many relations other than
straight lines or planes. Any model that is linear in the parameters is consid-
ered a linear model. Thus a quadratic relation y = β0 +β1x+β2x2 corresponds
to a linear model with two predictors, X1 = X and X2 = X2. The exponential
relation y = β0eβ1x is not linear, but the relation can be expressed by tak-
ing the natural logarithm of both sides. The corresponding linear equation is
lny = lnβ0 +β1x.
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174 7 Regression

7.2 Simple Linear Regression

7.2.1 Fitting the model

Example 7.1 (cars). Consider a set of paired observations of speed and stop-
ping distance of cars. Is there a linear relation between stopping distance and
speed of a car?

The data set cars is one of the data sets installed with R. We attach

the data set cars, and from the help page for cars (displayed using ?cars),
we learn that there are 50 observations of speed (mph) and dist (stopping
distance in feet), and that this data was recorded in 1920. Our first step in
the analysis is to construct a scatterplot of dist vs speed, using the plot

function.

> attach(cars) #attach the data

> ?cars #display the help page for cars data

> plot(cars) #construct scatterplot

The scatterplot displayed in Figure 7.1 reveals that there is a positive associa-
tion between distance dist and speed of cars. The relation between distance
and speed could be approximated by a line or perhaps by a parabola. We
start with the simplest model, the straight line model. The response variable
in this example is stopping distance dist and the predictor variable speed is
speed. To fit a straight line model

dist = β0 +β1 speed+ε,

we need estimates of the intercept β0 and the slope β1 of the line.

The lm function and the model formula

The linear model function is lm. This function estimates the parameters of a
linear model by the least squares method. A linear model is specified in R by
a model formula.

The R formula that specifies a simple linear regression model dist = β0 +
β1speed+ε is simply

dist ∼ speed

The model formula is the first argument to the lm (linear model) function.
In this example, the estimated regression model is obtained by

> lm(dist ~ speed)

The lm command above produces the following output.

Call:

lm(formula = dist ~ speed)
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Fig. 7.1 Scatterplot of stopping distance vs speed in Example 7.1.

Coefficients:

(Intercept) speed

-17.579 3.932

The function lm displays only the estimated coefficients, but the object re-
turned by lm contains much more information, which we will explore below.
As we want to analyze the fit of this model, it is useful to store the result:

> L1 = lm(dist ~ speed)

> print(L1)

In this case the value of L1 will be displayed after we type the symbol L1 or
print(L1). The result will be as shown above.

The fitted regression line is: dist = −17.579+3.932 speed. According to this
model, average stopping distance increases by 3.932 feet for each additional
mile per hour of speed. The abline or curve functions can be used to add
the fitted line to the scatterplot. See Figure 7.2(a).

> plot(cars, main="dist = -17.579 + 3.932 speed", xlim=c(0, 25))

> #line with intercept=-17.579, slope=3.932

> abline(-17.579, 3.932)

> curve(-17.579 + 3.932*x, add=TRUE) #same thing

Rx 7.1 A shortcut to add a simple linear regression line to a plot is to supply
the result of lm as the first argument to abline. In the above example, we
could have used abline(lm(dist ~ speed)) or abline(L1) to add the fitted
line to the plot in Figure 7.2(a).



176 7 Regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

0 5 10 15 20 25

0
20

40
60

80
10

0
12

0

dist = −17.579 + 3.932 speed

speed

di
st

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

0 5 10 15 20 25

0
20

40
60

80
10

0
12

0

dist = 2.909 speed

speed

di
st

(b)

Fig. 7.2 Regression lines for speed vs dist in Examples 7.1–7.2. Figure (a) dis-
plays the data with the fitted line ŷ = −17.579 + 3.932x from Example 7.1. Figure
(b) displays the same data with the regression-through-the-origin fit, ŷ = 2.909x from
Example 7.2.

7.2.2 Residuals

The residuals are the vertical distances from the observed stopping distance
dist (the plotting symbol) to the line. The paired observations are (xi,yi) =
(speedi,disti), i = 1, . . . ,50. The residuals are

ei = yi − ŷi,

where ŷi denotes the value of stopping distance predicted by the model at
speed xi. In this problem, ŷi = −17.579+3.932xi. One can observe in Figure
7.2(a) that the model tends to fit better at slow speeds than at higher speeds.
It is somewhat easier to analyze the distribution of the errors using a residual
plot. Figure 7.3 is a scatterplot of residuals vs fitted values. One way to
generate the residual plot is to use the plot method for the lm result. The
which=1 argument specifies the type of plot (residuals vs fitted values). The
add.smooth argument controls whether a certain type of curve is fitted to
the residuals.

> plot(L1, which=1, add.smooth=FALSE)

The residual plot (Figure 7.3) has three unusually large residuals labeled;
observations 23, 35, and 49. One can also observe that the residuals are
closer to zero at slow speeds; the variance of the residuals is not constant
across all speeds, but increasing with speed. Inference (tests or confidence
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intervals) about the model is usually based on the assumption that the errors
are normally distributed with mean zero and constant variance.
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Fig. 7.3 Scatterplot of residuals vs fitted values for the cars data in Example 7.1.

7.2.3 Regression through the origin

Example 7.2 (cars, cont.). The cars data includes speeds as slow as 4 mph,
and the estimated intercept should correspond to the expected distance re-
quired to stop a car that is not moving; however, our estimated intercept is
-17.579 feet. The model with intercept zero

Y = β1X +ε

can be estimated by explicitly including the intercept 0 in the model formula.
Then lm(dist ~ 0 + speed) sets intercept equal to zero and estimates the
slope by the least squares method.

> L2 = lm(dist ~ 0 + speed)

> L2

Call:

lm(formula = dist ~ 0 + speed)

Coefficients:

speed

2.909
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The estimated slope for this model is 2.909. For each additional one mph of
speed, the estimated average stopping distance increases 2.909 feet. The fitted
line plot for this model is in Figure 7.2(b). It is generated by the following
code.

> plot(cars, main="dist = 2.909 speed", xlim=c(0,25))

> #line with intercept=0, slope=2.909

> abline(0, 2.909)

Again we observe that the fit is better at slow speeds than at faster speeds.
A plot of residuals vs fitted values for this model can be generated by

> plot(L2, which=1, add.smooth=FALSE)

as described above. This plot (not shown) looks very similar to Figure 7.3.
A quadratic model could be considered for this data; see Exercise 7.8.
The cars data can be detached when it is no longer needed, using

> detach(cars)

7.3 Regression Analysis for Data with Two Predictors

In the next example there are two predictor variables. One could fit a simple
linear regression model with either of these variables, or fit a multiple linear
regression model using both predictors.

7.3.1 Preliminary analysis

Example 7.3 (Volume of Black Cherry Trees). The data file “cherry.txt”
can be obtained from StatSci at http://www.statsci.org/data/general/
cherry.html and can also be found in Hand et al. [21]. The data were col-
lected from 31 black cherry trees in the Allegheny National Forest, Pennsyl-
vania, in order to find an estimate for the volume of a tree (and therefore the
timber yield), given its height and diameter. The data set contains a sample
of 31 observations of the variables

Variable Description
Diam diameter in inches
Height height in feet
Volume cubic feet

This data set is also available in R as trees. It is identical to “cherry.txt”
except that the diameter variable is named “Girth”. We use the R data and
rename the diameter as Diam, creating a new data frame called Trees, then
attach the data frame.

http://www.statsci.org/data/general/cherry.html
http://www.statsci.org/data/general/cherry.html


7.3 Regression Analysis for Data with Two Predictors 179

> Trees = trees

> names(Trees)[1] = "Diam"

> attach(Trees)

The pairs function generates an array of scatterplots for each pair of vari-
ables. This type of plot (Figure 7.4) helps visualize the relations between
variables.

Diam
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Fig. 7.4 Pairs plot of cherry tree data in Example 7.3.

In the pairs plot (Figure 7.4) the variables Diam and Volume appear to
have a strong linear association, and Height and Volume are also related.

We also print a correlation matrix.

> pairs(Trees)

> cor(Trees)

Diam Height Volume

Diam 1.0000000 0.5192801 0.9671194

Height 0.5192801 1.0000000 0.5982497

Volume 0.9671194 0.5982497 1.0000000

The correlation between diameter and volume is 0.97, indicating a strong
positive linear relation between Diam and Volume. The correlation between
height and volume is 0.60, which indicates a moderately strong positive linear
association between Height and Volume.

As a first step, let us fit a simple linear regression model with diameter as
the predictor:

Y = β0 +β1X1 +ε,
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where Y is the volume, X1 is the diameter, and ε is random error; call this
Model 1. The lm function is used to fit the model and we store the result in
M1. The intercept term is included in the formula by default.

> M1 = lm(Volume ~ Diam)

> print(M1)

Call:

lm(formula = Volume ~ Diam, data = Trees)

Coefficients:

(Intercept) Diam

-36.943 5.066

The estimated intercept is -36.943 and the estimated slope is 5.066. According
to this model, the average volume increases by 5.066 cubic feet for each
additional 1 inch in diameter.

The fitted model M1 contains the estimated coefficients. We add the line
to the scatterplot of the data using the vector of coefficients M1$coef. The
scatterplot with fitted line is shown in Figure 7.5

> plot(Diam, Volume) #response vs predictor

> abline(M1$coef) #add fitted line
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Fig. 7.5 Scatterplot of cherry tree volume vs tree diameter with fitted regression
line in Example 7.3.

To predict volume for new trees, the predict method can be used. Store
the diameter value for the new tree(s) in a data frame using the name Diam of
the original model formula specified in the lm call. For example, the predicted
volume for a new tree with diameter 16 in. is obtained by
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> new = data.frame(Diam=16)

> predict(M1, new)

1

44.11024

The predicted volume of the new tree is 44.1 cubic feet.
For inference, one requires some assumptions about the distribution of

the error term. We assume that the random errors ε are independent and
identically distributed (iid) as Normal(0,σ2) random variables. Residual plots
help us to assess the fit of the model and the assumptions for ε.

One can obtain residual plots using the plot method for lm; here we are
requesting two plots: a plot of residuals vs fits (1) and a QQ plot to check for
normality of residuals (2).

plot(M1, which=1:2)

The user is prompted for each graph with a message at the console:

Waiting to confirm page change...

The residual plots are shown in Figure 7.6(a) and 7.6(b). In Figure 7.6(a)
a curve has been added. This curve is a fitted lowess (local polynomial
regression) curve, called a smoother. The residuals are assumed iid, but there
is a pattern evident. The residuals have a “U” shape or bowl shape. This
pattern could indicate that there is a variable missing from the model. In
the QQ plot 7.6(b), normally distributed residuals should lie approximately
along the reference line shown in the plot. The observation with the largest
residual corresponds to the tree with the largest volume, observation 31. It
also has the largest height and diameter.

7.3.2 Multiple regression model

A multiple linear regression model with response variable Y and two predictor
variables X1 and X2 is

Y = β0 +β1X1 +β2X2 +ε,

where ε is a random error term. For inference we assume that the errors are
normally distributed and independent with mean zero and common variance
σ2.

Example 7.4 (Model for Volume of Cherry Trees, cont.). Next we consider
the two variable model for predicting volume of cherry trees given diameter
and height. This is a multiple regression model with two predictors; X1 is the
diameter and X2 is the height of the tree. The response variable is Y , the
volume. Call this Model 2.
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Fig. 7.6 Residuals vs fits (a) and normal QQ plot of residuals (b) in Example 7.3
for Model 1.

Least squares estimates of the parameters of multiple linear regression
models are obtained by lm, using similar syntax as for simple linear regression.
The model formula determines which type of model is fit. The model formula
we require is

Volume ∼ Diam+Height

and we fit the model, store it as M2, then print the result with the commands

> M2 = lm(Volume ~ Diam + Height)

> print(M2)

Call:

lm(formula = Volume ~ Diam + Height)

Coefficients:

(Intercept) Diam Height

-57.9877 4.7082 0.3393

The fitted regression model is

Ŷ = −57.9877+4.7082X1 +0.3393X2

or Volume = −57.9877 + 4.7082Diam + 0.3393Height + error. According to
this model, when height is held constant, average volume of a tree increases
by 4.7082 cubic feet for each additional inch in diameter. When diameter is
held constant, average volume of a tree increases by 0.3393 cubic feet for each
additional inch of height.

The residual plots for Model 2 are obtained by

> plot(M2, which=1:2)
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(see the previous section). These residual plots for Model 2 (not shown) look
similar to the corresponding plots for M1 in Figure 7.6(a). The “U” shaped
pattern of residuals in the plot of residuals vs fits (similar to Figure 7.6(a))
may indicate that a quadratic term is missing from the model.

Example 7.5 (Model for Cherry Trees, cont.). Finally, let us fit a model that
also includes the square of diameter as a predictor. Call this Model 3. The
model is specified by the formula

Volume ~ Diam + I(Diam^2) + Height

where I(Diam^2) means to interpret Diam^2 “as is” (the square of Diam)
rather than interpret the exponent as a formula operator. We fit the model,
storing the result in M3.

> M3 = lm(Volume ~ Diam + I(Diam^2) + Height)

> print(M3)

Call:

lm(formula = Volume ~ Diam + I(Diam^2) + Height)

Coefficients:

(Intercept) Diam I(Diam^2) Height

-9.9204 -2.8851 0.2686 0.3764

Then we display the residual plots, which are shown in Figures 7.7(a) and
7.7(b).

plot(M3, which=1:2)
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Fig. 7.7 Residuals vs fits (a) and normal QQ plot of residuals in Example 7.5 for
Model 3.
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For Model 3, the plot of residuals vs fits in Figure 7.7(a) does not have the“U”
shape that was apparent for Models 1 and 2. The residuals are approximately
centered at 0 with constant variance. In the normal QQ plot (Figure 7.7(b)),
the residuals are close to the reference line on the plot. These residual plots
are consistent with the assumption that errors are iid with a Normal(0,σ2)
distribution.

7.3.3 The summary and anova methods for lm

The summary of the fitted model contains additional information about the
model. In the result of summary we find a table of the coefficients with stan-
dard errors, a five number summary of residuals, the coefficient of determi-
nation (R2), and the residual standard error.

Example 7.6 (Cherry Trees Model 3). The summary of our multiple regression
fit stored in M3 is obtained below.

> summary(M3)

Call:

lm(formula = Volume ~ Diam + I(Diam^2) + Height)

Residuals:

Min 1Q Median 3Q Max

-4.2928 -1.6693 -0.1018 1.7851 4.3489

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.92041 10.07911 -0.984 0.333729

Diam -2.88508 1.30985 -2.203 0.036343 *

I(Diam^2) 0.26862 0.04590 5.852 3.13e-06 ***

Height 0.37639 0.08823 4.266 0.000218 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Residual standard error: 2.625 on 27 degrees of freedom

Multiple R-squared: 0.9771, Adjusted R-squared: 0.9745

F-statistic: 383.2 on 3 and 27 DF, p-value: < 2.2e-16

The adjusted R2 value of 0.9745 indicates that more than 97% of the total
variation in Volume about its mean is explained by the linear association
with the predictors Diam, Diam2, and Height. The residual standard error is
2.625. This is the estimate of σ, the standard deviation of the error term ε
in Model 3.

The table of coefficients includes standard errors and t statistics for testing
H0 : βj = 0 vs H1 : βj 	= 0. The p-values of the test statistics are given under
Pr(>|t|). We reject the null hypothesis H0 : βj = 0 if the corresponding p-
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value is less than the significance level. At significance level 0.05 we conclude
that Diam, Diam2, and Height are significant.

The analysis of variance (ANOVA) table for this model is obtained by the
anova function.

> anova(M3)

Analysis of Variance Table

Response: Volume

Df Sum Sq Mean Sq F value Pr(>F)

Diam 1 7581.8 7581.8 1100.511 < 2.2e-16 ***

I(Diam^2) 1 212.9 212.9 30.906 6.807e-06 ***

Height 1 125.4 125.4 18.198 0.0002183 ***

Residuals 27 186.0 6.9

From the ANOVA table, one can observe that Diam explains most of the
total variability in the response, but the other predictors are also significant
in Model 3.

A way to compare the models (Model 1 in Example 7.3, Model 2 in Ex-
ample 7.4, and Model 3 in Example 7.5) is to list all of the corresponding lm

objects as arguments to anova,

> anova(M1, M2, M3)

which produces the following table:

Analysis of Variance Table

Model 1: Volume ~ Diam

Model 2: Volume ~ Diam + Height

Model 3: Volume ~ Diam + I(Diam^2) + Height

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 524.30

2 28 421.92 1 102.38 14.861 0.0006487 ***

3 27 186.01 1 235.91 34.243 3.13e-06 ***

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

This table shows that the residual sum of squares decreased by 102.38 from
524.30 when Height was added to the model, and decreased another 235.91
from 421.92 when the square of diameter was added to the model.

7.3.4 Interval estimates for new observations

Regression models are models for predicting a response variable given one
or more predictor variables. We have seen how to obtain predictions (point
estimates) of the response variable using predict for lm in Example 7.3 (see
the predict.lm help topic). The predict method for lm also provides two
types of interval estimates for the response:
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a. Prediction intervals for new observations, for given values of the predictor
variables.

b. Confidence intervals for the expected value of the response for given values
of the predictors.

Example 7.7 (Cherry Trees Model 3, cont.).
To predict volume for new trees with given diameter and height, the pre-

dict method can be used. Store the diameter and height values for the new
tree(s) in a data frame using the identical names as in the original model
formula specified in the lm call. For example, to apply the Model 3 fit to
obtain a point estimate for the volume of a new tree with diameter 16 in. and
height 70 ft., we enter

> new = data.frame(Diam=16, Height=70)

> predict(M3, newdata=new)

1

39.03278

The predicted volume of the new tree is 39.0 cubic feet. This estimate is
about 10% lower than the prediction we obtained from Model 1, which used
only diameter as a predictor.

To obtain a prediction interval or a confidence interval for the volume of
the new tree, the predict method is used with an argument called interval

specified. The confidence level is specified by the level argument, which
is set at 0.95 by default. One can abbreviate the argument values. For a
prediction interval specify interval="pred" and for a confidence interval
use interval="conf".

> predict(M3, newdata=new, interval="pred")

fit lwr upr

1 39.03278 33.22013 44.84544

The prediction interval for volume of a randomly selected new tree of diameter
16 and height 70 is (33.2, 44.8) cubic feet. The confidence interval for the
expected volume of all trees of diameter 16 and height 70 is obtained by

> predict(M3, newdata=new, interval="conf")

fit lwr upr

1 39.03278 36.84581 41.21975

so the confidence interval estimate for expected volume is (36.8, 41.2) cubic
feet. The prediction interval is wider than the confidence interval because the
prediction for a single new tree must take into account the variation about
the mean and also the variation among all trees of this diameter and height.

To obtain point estimates or interval estimates for several new trees, one
would store the new values in a data frame like our data frame new. For
example, if we require confidence intervals for diameter 16, at a sequence of
values of height 65 to 70, we can do the following.
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> diameter = 16

> height = seq(65, 70, 1)

> new = data.frame(Diam=diameter, Height=height)

> predict(M3, newdata=new, interval="conf")

which produces the following estimates:

fit lwr upr

1 37.15085 34.21855 40.08315

2 37.52724 34.75160 40.30287

3 37.90362 35.28150 40.52574

4 38.28001 35.80768 40.75234

5 38.65640 36.32942 40.98338

6 39.03278 36.84581 41.21975

7.4 Fitting a Regression Curve

In this section we discuss two examples for which we want to estimate a
regression curve rather than a straight line relation between a response vari-
able Y and a single predictor X. In Example 7.8 the response variable is
linearly related to the reciprocal of the predictor. In Example 7.9, we fit an
exponential model.

Example 7.8 (Massachusetts Lunatics Data).
In Chapter 1, the Massachusetts Lunatics data1 was introduced. These

data are from an 1854 survey conducted by the Massachusetts Commission
on Lunacy. We created the data file “lunatics.txt” from the table on the web.
See Chapter 1 (Example 1.12, page 29) for a detailed explanation of how to
import the data into R. We import the data into a data frame lunatics and
attach it using

> lunatics = read.table("lunatics.txt", header=TRUE)

> attach(lunatics)

The data frame lunatics has 14 rows and six columns, corresponding to the
following variables:

Variable Description
COUNTY Name of county
NBR Number of lunatics, by county
DIST Distance to nearest mental health center
POP County population , 1950 (thousands)
PDEN County population density per square mile
PHOME Percent of lunatics cared for at home

1 Data and Story Library, http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.
html

http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
http://lib.stat.cmu.edu/DASL/Datafiles/lunaticsdat.html
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In this example we investigate the relationship between the percentage of
patients cared for at home and distance to the nearest health center.

First we plot PHOME vs DIST to see if a linear relation is a plausible model,
and print the sample correlation.

> plot(DIST, PHOME)

> cor(DIST, PHOME)

[1] 0.4124404

The sample correlation 0.41 measures the linear association between the two
variables. The scatterplot in Figure 7.8(a) suggests that the relation between
PHOME and DIST is nonlinear, perhaps more like a hyperbola. With this in
mind, we create the variable RDIST, the reciprocal of distance, compute sam-
ple correlation, and plot PHOME vs RDIST.

> RDIST = 1/DIST

> plot(RDIST, PHOME)

> cor(RDIST, PHOME)

[1] -0.7577307

Here |cor(RDIST,PHOME)| > |cor(DIST,PHOME)|, indicating a stronger linear
association between RDIST and PHOME than between the original variables
DIST and PHOME. In Figure 7.8(b) a linear relation between PHOME and RDIST

appears to be a plausible model. (The line on the plot is added below after
fitting the model.)
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Fig. 7.8 Percent of lunatics cared for at home vs distance (a) and reciprocal of
distance (b) in Example 7.8.

We fit the simple linear regression model

PHOMEi = β0 +β1RDISTi +εi, i = 1, . . . ,14,
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using the lm function. Typically we want to save the result in an object for
further analysis.

> M = lm(PHOME ~ RDIST)

> M

Call:

lm(formula = PHOME ~ RDIST)

Coefficients:

(Intercept) RDIST

73.93 -266.32

The estimated regression line is PHOME = 73.93−266.32RDIST, and it can
be added to the plot in Figure 7.8(b) with the abline function:

> abline(M)

Although data points for 13 of the 14 counties are close to the fitted line in
Figure 7.8(b), there is one observation that is far from the line. We may also
want to plot the fits for the original data. The fits are points on the curve

PHOME = β̂0 + β̂1
1

DIST
,

where β̂0 and β̂1 are the intercept and slope estimates stored in the $coef

vector of our lm object. The plot in Figure 7.9 is obtained by

> plot(DIST, PHOME)

> curve(M$coef[1] + M$coef[2] / x, add=TRUE)

Again, we observe one observation that is far from the fitted curve. One also
can observe that most of the observed data are above the fitted curve; the
fitted model tends to underestimate the response.

A plot of residuals vs fits is produced by the command

> plot(M$fitted, M$resid, xlab="fitted", ylab="residuals")

We added a dashed horizontal line through 0 to the plot by

> abline(h=0, lty=2)

The plot is shown in Figure 7.10(a). On the residual plot we find that there
is an outlier among the residuals at the lower right corner.

The identify function is helpful to identify which observation is the out-
lier. This function waits for the user to identify n points on the plot, and
optionally labels the points. We want n=1 to identify one point, and we spec-
ify an abbreviation for the COUNTY as the label.

> lab = abbreviate(COUNTY)

> identify(M$fitted.values, M$residuals, n=1, labels=lab)

[1] 13

The identify function returns the row number of the observation(s) identi-
fied on the plot. Row number 13 corresponds to NANTUCKET county, which
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Fig. 7.9 Predicted values of percentage of patients cared for at home in Example
7.8.
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Fig. 7.10 Fitted values vs residuals for the regression of PHOME on RDIST in Example
7.8. In (b), the outlier has been labeled as “NANT” (NANTUCKET county), after
using the identify function.

is labeled on the plot as “NANT” where we clicked (See Figure 7.10(b).) We
can extract this observation from the data set by

> lunatics[13, ]

COUNTY NBR DIST POP PDEN PHOME

13 NANTUCKET 12 77 1.74 179 25
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According to the documentation provided with the data set on the DASL
web site, Nantucket county is an offshore island, which may need to be taken
into account in the model.

Finally, when the data frame is no longer required, it can be detached.

> detach(lunatics)

Example 7.9 (Moore’s Law). In a recent interview,2 Google’s CEO Eric
Schmidt discussed the future of the internet. According to Moore’s Law,
Schmidt said, “in 10 years every computer device you use will be 100 times
cheaper or 100 times faster.” Moore’s Law, named for Intel co-founder Gor-
don Moore [34], states that the number of transistors on a chip (a measure
of computing power) doubles every 24 months. In 1965 Moore predicted that
the number of transistors would double every year, but in 1975 he modified
that doubling time to every two years.

Moore’s Law has been applied to various measurements of computing
power. If the rate of growth in computing power is assumed constant, Moore’s
Law is the model

y = b02b1t, t ≥ 0,

where y is the measurement at time t, b0 is the initial measurement, and 1/b1
is the time to double. That is, taking logarithms base 2 of both sides, we can
write the model as

log2(y) = log2(b0)+ b1t, t ≥ 0, (7.2)

a linear model for logarithm of y at time t.
In this example, we fit an exponential model to computer processor speed.

The data file“CPUspeed.txt”contains the maximum Intel CPU speed vs time
from 1994 through 2004. The variables are:

Variable Description
year calendar year
month month
day day
time time in years
speed Max IA-32 Speed (GHz)
log10speed logarithm base 10 of speed

The following code reads in the data from the file “CPUspeed.txt,”

> CPUspeed = read.table("CPUspeed.txt", header=TRUE)

and head displays the first few observations.

2 http://firstdraftofhistory.theatlantic.com/analysis/internet_is_good.php

http://firstdraftofhistory.theatlantic.com/analysis/internet_is_good.php
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> head(CPUspeed)

year month day time speed log10speed

1 1994 3 7 1994.179 0.100 -1.0000000

2 1995 3 27 1995.233 0.120 -0.9208188

3 1995 6 12 1995.444 0.133 -0.8761484

4 1996 1 4 1996.008 0.166 -0.7798919

5 1996 6 10 1996.441 0.200 -0.6989700

6 1997 5 7 1997.347 0.300 -0.5228787

If Moore’s Law holds (if an exponential model is correct), then we should
expect that the logarithm of speed vs time follows an approximately linear
trend. Here the base 2 logarithm is natural because of the base 2 logarithm in
the proposed model (7.2), so we apply the change of base formula log2(x) =
log10(x)/ log10(2). Since the earliest observation is in year 1994, we compute
the time (years) measured in years since the start of 1994.

> years = CPUspeed$time - 1994

> speed = CPUspeed$speed

> log2speed = CPUspeed$log10speed / log10(2)

We construct scatterplots of speed vs time and log2(speed) vs time (where
time is the time elapsed since 1994).

> plot(years, speed)

> plot(years, log2speed)

The plots are displayed in Figure 7.11(a) and 7.11(b). Figure 7.11(b) suggests
that a linear association may exist between log2speed and years, so we fit
a linear model using the lm function.

> L = lm(log2speed ~ years)

> print(L)

Call:

lm(formula = log2speed ~ years)

Coefficients:

(Intercept) years

-3.6581 0.5637

The fitted model is l̂ny = −3.6581+0.5637 t or

ŷ = 2−3.6581+0.5637t = 0.0792(20.5637t). (7.3)

At time t = 1/0.5637 = 1.774 years, the predicted speed is ŷ = 0.0792(2); thus,
expected speed will double in an estimated 1.774 years. According to this
model, CPU speeds are predicted to increase by a factor of 20.5637(10) ≈ 50
in 10 years (about 50 times faster, rather than 100 times faster as claimed in
the interview).

To add the fitted regression curve to the plot in Figure 7.11(a) the curve
function can be used with the exponential model (7.3).
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Fig. 7.11 Plot of CPU speed vs time (a) and log2(CPU speed) vs time (b) in Ex-
ample 7.9

> plot(years, speed)

> curve(2^(-3.6581 + 0.5637 * x), add=TRUE)

To add the fitted regression line to the plot in Figure 7.11(b) the abline

function can be used.

> plot(years, log2speed)

> abline(L)

These two plots are displayed in Figures 7.12(a) and 7.12(b).

Moore’s Law: residual analysis

The fit of the model appears to be good from a visual inspection of the
fitted line in Figure 7.11(b). The model adequacy can be investigated further
through residual plots.

The residuals are observed errors ei = yi − ŷi, where yi is the observed
response and ŷi is the fitted value for observation i. The lm function returns
an object containing residuals, fitted values, and other values. If we store
the model rather than print it, we can access the residuals and other data
returned by lm. In addition we can use available methods such as summary,
anova, or plot.

The plot method for lm objects displays several residual plots. Using the
argument which=1:2 selects the first two plots.

> plot(L, which=1:2)
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Fig. 7.12 Plot of CPU speed vs time with fitted regression curve (a) and log2(CPU
speed) vs time with fitted regression line (b) in Example 7.9

The two residual plots are shown in Figure 7.13. Figure 7.13(a) is a plot of
residuals vs fitted values, with a curve added that has been fit to the data
using a local regression “smoother” (see lowess). Figure 7.13(b) is a normal
QQ plot of residuals.

An assumption for inference in regression is that the errors are independent
and identically distributed (iid) as Normal(0,σ2), but the normal QQ plot
suggests that the residuals are not normal. In Figure 7.13(a) it appears that
the residuals are not iid.

Three larger residuals are identified on the plot of residuals vs fitted values
(observations 16, 26, 27) and the same points are identified on the QQ plot.
These are

> CPUspeed[c(16, 26, 27), ]

year month day time speed log10speed

16 2000 10 20 2000.802 1.5 0.1760913

26 2004 6 21 2004.471 3.6 0.5563025

27 2004 11 15 2004.873 3.8 0.5797836

Observations 26 and 27 are the two most recent, possibly indicating that the
model is not a good fit for the near future.

The summary method produces additional information about the model
fit. Suppose that one only needs the coefficient of determination R2, rather
than the complete output of summary. For simple linear regression extract
$r.squared from the summary, and for multiple linear regression extract
$adj.r.squared (adjusted R2).

> summary(L)$r.squared

[1] 0.9770912
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The coefficient of determination is 0.9770912; more than 97.7% of the total
variation in the logarithm of speed is explained by the model.

On November 13, 2005 the maximum processor speed was 3.8 GHz. What
does the fitted linear regression model predict for expected maximum speed
at this time? The predict method for lm objects returns the predicted values
for the data or new observations. The new observations should be stored in
a data frame, using the same names for the predictor variables as in the
model formula. In this case the data frame has a single variable, years. The
fractional year up to November 13 should be expressed as a decimal. If we
take the fractional year elapsed in 2005 to be 316.5/365, we have

> new = data.frame(years = 2005 + 316.5 / 365 - 1994)

> lyhat = predict(L, newdata=new)

> lyhat

1

3.031005

Recall that the response variable in the fitted model is log2(speed), so the
speed predicted by the model on November 13, 2005 is

> 2^lyhat

1

8.173792

GHz and the error is 8.2 - 3.8 = 4.4 GHz. This illustrates the danger of
extrapolation; note that our latest observation in CPUspeed is about one full
year earlier, Nov. 15, 2004.

−3 −2 −1 0 1 2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Fitted values

R
es

id
ua

ls

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

lm(log2speed ~ years)

Residuals vs Fitted

27

16

26

(a)

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●● ●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(log2speed ~ years)

Normal Q−Q

27

26

16

(b)

Fig. 7.13 Residual plots from the fitted regression model, log2(CPU speed) vs time,
in Example 7.9.
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Exercises

7.1 (mammals data). The mammals data set in the MASS package records
brain size and body size for 62 different mammals. Fit a regression model to
describe the relation between brain size and body size. Display a residual plot
using the plot method for the result of the lm function. Which observation
(which mammal) has the largest residual in your fitted model?

7.2 (mammals, continued). Refer to the mammals data in package MASS.
Display a scatterplot of log(brain) vs log(body). Fit a simple linear regres-
sion model to the transformed data. What is the equation of the fitted model?
Display a fitted line plot and comment on the fit. Compare your results with
results of Exercise 7.1.

7.3 (mammals residuals). Refer to Exercise 7.2. Display a plot of residuals
vs fitted values and a normal-QQ plot of residuals. Do the residuals appear
to be approximately normally distributed with constant variance?

7.4 (mammals summary statistics). Refer to Exercise 7.2. Use the sum-
mary function on the result of lm to display the summary statistics for the
model. What is the estimate of the error variance? Find the coefficient of
determination (R2) and compare it to the square of the correlation between
the response and predictor. Interpret the value of (R2) as a measure of fit.

7.5 (Hubble’s Law). In 1929 Edwin Hubble investigated the relationship
between distance and velocity of celestial objects. Knowledge of this rela-
tionship might give clues as to how the universe was formed and what may
happen in the future. Hubble’s Law is is

Recession Velocity = H0 ×Distance,

where H0 is Hubble’s constant. This model is a straight line through the origin
with slope H0. Data that Hubble used to estimate the constant H0 are given
on the DASL web at http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.
html. Use the data to estimate Hubble’s constant by simple linear regression.

7.6 (peanuts data). The data file “peanuts.txt” (Hand et al. [21]) records
levels of a toxin in batches of peanuts. The data are the average level of
aflatoxin X in parts per billion, in 120 pounds of peanuts, and percentage
of non-contaminated peanuts Y in the batch. Use a simple linear regression
model to predict Y from X. Display a fitted line plot. Plot residuals, and
comment on the adequacy of the model. Obtain a prediction of percentage
of non-contaminated peanuts at levels 20, 40, 60, and 80 of aflatoxin.

7.7 (cars data). For the cars data in Example 7.1, compare the coefficient
of determination R2 for the two models (with and without intercept term in
the model). Hint: Save the fitted model as L and use summary(L) to display
R2. Interpret the value of R2 as a measure of the fit.

http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html.
http://lib.stat.cmu.edu/DASL/Datafiles/Hubble.html.
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7.8 (cars data, continued). Refer to the cars data in Example 7.1. Create
a new variable speed2 equal to the square of speed. Then use lm to fit a
quadratic model

dist = β0 +β1speed+β2(speed)2 +ε.

The corresponding model formula would be dist ~ speed + speed2. Use
curve to add the estimated quadratic curve to the scatterplot of the data
and comment on the fit. How does the fit of the model compare with the
simple linear regression model of Example 7.1 and Exercise 7.7?

7.9 (Cherry Tree data, quadratic regression model). Refer to the
Cherry Tree data in Example 7.3. Fit and analyze a quadratic regression
model y = b0 + b1x + b2x2 for predicting volume y given diameter x. Check
the residual plots and summarize the results.

7.10 (lunatics data). Refer to the “lunatics” data in Example 7.8. Repeat
the analysis, after deleting the two counties that are offshore islands, NAN-
TUCKET and DUKES counties. Compare the estimates of slope and intercept
with those obtained in Example 7.8. Construct the plots and analyze the
residuals as in Example 7.8.

7.11 (twins data). Import the data file “twins.txt” using read.table. (The
commands to read this data file are shown in the twins example in Section
3.3, page 85.) The variable DLHRWAGE is the difference (twin 1 minus twin 2)
in the logarithm of hourly wage, given in dollars. The variable HRWAGEL is
the hourly wage of twin 1. Fit and analyze a simple linear regression model
to predict the difference DLHRWAGE given the logarithm of the hourly wage of
twin 1.
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