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Abstract—Conventionally isolated operational technology (OT)
networks continue to merge with modern information technology
(IT) networks in the pursuit of increased efficiency and ease-of-
use. This interconnectedness introduces significant cybersecurity
risks, which in turn prompts the adoption of IT security controls
such as intrusion detection systems (IDSes). To manage the
resulting alerts, organizations typically hire some dedicated staff
to investigate as many alerts as possible, while ignoring any
that cannot be acted upon in time. By contrast, we describe an
economic approach that can identify a more optimal allocation
of resources to investigate IDS alerts that minimizes overall
expected costs. Using this economic model, we determine multiple
filtering configurations of an anomaly-based IDS for electric utility
and additive manufacturing OT environments. Through the use
of open source information, we estimate costs associated with
classification errors, allowing us to identify the economically-
informed optimal filter configuration. By varying the annual
malicious alert probability, we calculate estimated costs and
recommended security analyst counts for a set of hypothetical
scenarios.

I. INTRODUCTION

Traditional operational technology (OT) systems, such as
industrial control systems (ICS), were designed to operate in
a technological vacuum, shielded from many of the common
threats faced by networks without this isolation. However, the
pursuit of increased productivity through remote monitoring
and improved access has led to recent widespread adoption
of low-cost, internet connected devices within ICS. As a result,
the conventional security provided through network isolation is
no longer applicable.

To combat this exposure to threats, ICS networks have been
incorporating cybersecurity measures commonly used in non-
ICS networks, such as intrusion detection systems (IDS). An
IDS is a network monitoring tool used to identify potential
attacks and alert cybersecurity analysts prompting a manual
review in an attempt to mitigate potential losses. When a
security operations center (SOC) initially deploys an IDS, a
period of time is spent tuning the IDS to operate efficiently
within the network. This process commonly starts with an
overly sensitive IDS configuration, resulting in a large portion
of regular network traffic being labeled as malicious. Analysts
then manually sift through these alerts, adjusting the IDS to
minimize errors.

The goal of the tuning process is two-fold: minimize the
amount of malicious traffic making it past the analysts, while
simultaneously maximizing the efficiency of analyst time. Mali-
cious network traffic which manages to elude detection, poses a
threat to the network. In the case of OT networks, a threat could
manifest itself as widespread power outages, explosions in oil
pipelines, or many other catastrophic outcomes, highlighting
the importance of detecting these threats. At the same time,
too many spurious alerts will overwhelm the SOC, resulting
in wasted analyst time and potentially leading to decision
fatigue [1]. While both objectives are important, they present
an unavoidable trade-off. As an IDS is tuned to catch more
malicious traffic, more benign traffic will necessarily be falsely
labeled as malicious, and vice versa. Therein lies a fundamental
difficulty for security personnel attempting to optimize the IDS:
what is the optimal IDS configuration to minimize costs?

In practice, analysts almost never explicitly account for
costs when balancing this trade-off. Instead, heuristics are
chosen (e.g., deal with all alerts exceeding a fixed threshold of
probability like 50%). Another common approach is to tune the
IDS so that the number of alerts presented remains manageable
for the current SOC staffing levels.

This paper, by contrast, presents an economically-informed
method to balance the benefit of detecting more true alerts while
minimizing the cost associated with pursuing false alarms.
We apply this to two OT environments: an electric utility
and an additive manufacturing facility. We first present the
economic model used for balancing costs in intrusion detection
systems in Section 3. We then describe the OT environments
under evaluation and construct point estimates for key model
parameters in Section 4. We then evaluate the model using
datasets for both environments in Section 5.

II. RELATED WORK

The discovery of Stuxnet amplified the amount of research
performed surrounding ICS security [2], [3], even before the
overlap of OT and conventional IT networks began to resemble
what it looks like today. Krotofil and Gollmann point out that
many OT networks are predictable by nature, lending them-
selves particularly well suited for IDS detection methods [4].
This is supported by a number of IDS classification methods
displaying high detection rates [5], [6].



While the IDS technology itself displays promising results in
OT networks, there have been a number of qualitative survey
studies highlighting a struggle by SOC analysts to deal with
classification of network alerts. A Ponemon report [7] from
2019 finds that up to 33% of all alerts produced while using
security information and event management (SIEM) systems
are false positives. A similar study performed by Cisco in
2017 [8] found that up to 72% of all alerts leading to a
closer investigation were found to be illegitimate. A survey
of SOC analysts by Akinrolabu et al. [9] further identified
significant false positive rates as an obstacle to efficient security
operations. In contrast, a study by Kokulu et al. [10] found that
the majority of interviewed SOC managers did not consider
false positive rates as a major issue, although insufficient
budgets and lack of automation were a concern for many of
the managers interviewed.

III. ECONOMIC MODEL

There are two primary detection methods used by IDS
for classifying network traffic: signature-based, and anomaly-
based. A signature-based IDS will inspect incoming traffic and
compare it to a database of previously identified malicious
behavior patterns, called signatures. In contrast, an anomaly-
based IDS uses machine learning algorithms to identify normal
traffic, labeling deviations from this behavior as anomalous. For
this work, we use an anomaly-based IDS developed by Howe
and Papa [11]. Their IDS was specifically designed to work
with OT traffic, using a number of supervised and unsupervised
machine-learning methods to identify anomalous traffic.

When the IDS is presented with network traffic, it will
analyze specific characteristics of every packet, and assign a
score to each packet in the range (0, 1). The closer the score
is to 1, the more confident the IDS is that the traffic is truly
anomalous. For the rest of this paper, we refer to these scores as
alerts. In addition to the anomaly score, the true nature of each
alert is also known, as the datasets used have been manually
labeled.

The alerts are then passed through the economic model
developed by Böhme and Moore [12] to classify each alert
as malicious or benign based on the anomaly score. The model
uses a series of thresholds within the IDS scoring range as a
cutoff value for predicting the true nature of the alerts. Each
threshold acts as a filter, separating the alerts into distinct sets
by labeling any alert with a score at, or above the threshold as
malicious, and all others as benign. Because the true nature of
each alert is known, the performance of each filter configuration
can be measured. Every label prediction will have four possible
outcomes, as seen in Table I.

Prediction
Reality Malicious Benign

Malicious True Positive (TP) False Positive (FP)
Benign False Negative (FN) True Negative (TN)

β = FN
(FN+TP )

α = FP
(FP+TN)

TABLE I: Confusion matrix of all possible outcomes.

Fig. 1: Example ROC curve from Böhme and Moore.

The false negative rate, β, and false positive rate, α, refer to
the ratio of falsely labeled alerts at each filter configuration.
When we plot these rates at each configuration, we get a
receiver operating characteristic (ROC) curve representing the
performance of the technology across all thresholds, similar to
Figure 1. On the vertical axis is the detection rate, or 1−β. The
ROC curve allows us to visualize the trade-off between labeling
errors as we vary the filter threshold. We could reduce α to
zero by labeling all traffic as benign, and we could maximize
the detection rate by labeling all alerts as malicious. Neither
of these extremes produce any valuable information about the
filter configurations, but they define the limits of the trade-off
between each metric.

By assigning a cost to each classification error, we can
identify the optimal filter configuration located at the α which
minimizes total costs, α∗. Equation 1 shows how we can
identify α∗, where β is a function of α. Additionally, a, b > 0
represent the false positive and false negative costs respectively,
while p represents the prior probability of an alert being
malicious.

α∗ = argmin
α

p · β(α) · b+ (1− p) · α · a (1)

If we take the first order condition of Equation 1, we can
find the slope of the “indifference line”, shown in Equation 2,
where prices of false positives and false negatives are equal. The
optimal operating point is where this indifference line crosses
the ROC curve. In Figure 1 we can see an example of two ROC
curves, A and B, as well as their optimal operating points, α∗

A

and α∗
B , and their indifference lines.

β′(α∗) = −1− p

p
· a
b

(2)

IV. EVALUATED OT ENVIRONMENTS

We use the economic model to determine optimal filter
configurations and cost estimates for two OT environments:



an electrical utility operator, and an additive manufacturing
facility. For each environment, we process synthetic network
traffic through our IDS, evaluate a series of filter configurations,
and estimate the expected costs associated with the optimal
configuration.

A. Electric Utility Environment

To simulate an electric utility operator, we use a dataset
developed by Lemay and Fernandez [13], and further modified
by Anton et al. [14] to create three distinct datasets. We use
dataset three, which has 364,817 individually labeled packets,
including 206 malicious instances. The dataset consists of
simulated Modbus traffic in an electrical supervisory control
and data acquisition (SCADA) system. Within the network are
several master terminal units (MTU), each communicating with
a set of remote terminal units (RTU). Each RTU aggregates
measurements taken from three voltage sensors and a breaker
box. The MTUs poll the RTUs for information at regular
intervals to collect information about the state of the system.
Malicious traffic was injected to the network by Lemay et al.
by conducting attacks in real-time. All packets associated with
the attack were labeled as malicious, while the remaining traffic
is labeled as benign.

B. Additive Manufacturing Environment

To simulate additive manufacturing data, we use data from
a testbed environment set up on location at the University of
Tulsa. We use a Desktop Metal Studio 2 metal 3D printer, along
with a chemical debinder and furnace. We simulate malicious
traffic on the network by allowing the printer, debinder and
furnace to communicate as normal with the MTU for a period
of time, before suddenly introducing connections from a laptop
unknown to the rest of the network. The uknown laptop traffic is
labeled anomalous, while all other traffic is labeled benign. The
dataset consists of 807 packets, with 74 malicious instances.

C. Cost Estimation

We use open source information to estimate the costs asso-
ciated with erroneous labeling of network alerts for both OT
environments. False positive cost is estimated as a function
of SOC analyst time spent reviewing spurious alerts. While
the ICS networks are different in each OT environment, the
false positive cost estimation function we use does not include
network-specific parameters, providing a single per-alert cost
across both environments. The costs and their sources are
summarized in Table II.

Error Type Data Source

FP
Salary Bureau of Labor Statistics [15]

Review Rate Palo Alto [16]
Crowley and Saraiva [17], [18]

FN
Electric Households US Census [19]

Modifier Sullivan et al. [20]

Add. Man. Print Speed Company Site [21]–[24]
Material Cost Titanium Alloy [Local]

TABLE II: Summary of cost estimate sources.

a) False Positive Costs: To estimate false positive costs,
we use reports from Palo Alto [16], as well as Imperva
[25] which state that larger firms can see from 25,000 to
one million alerts per day, respectively. However, the total
number the analysts can manually process is far lower, to just
1,700 a day according to Palo Alto. A study by Crowley and
Pescatore for the SANS Institute in 2019 [17] found that larger
corporations servicing over 100,000 customers, often employ
26-100 analysts, while Saraiva et al. [18] found that large SOC’s
servicing over 50,000 customers will employ 20 analysts on
average. An ICS SOC employing 25 analysts, processing 1,700
alerts per day would realize an hourly review rate of 8.5 alerts
per hour, per analyst.

We then use salary data from the Bureau of Labor Statistics
[15] to determine the hourly salary of SOC analysts. The bureau
tracks a specific job titled “Information Security Analyst”,
defined as analysts which “plan and carry out security measures
to protect an organization’s computer networks and systems.”
This definition closely resembles the duties of a SOC analyst
and the bureau tracks this salary annually starting in 2012. We
also assume a 50% benefit rate on top of the salary. This data
will allow us to identify analyst specific and overall SOC costs
for false positives as a function of alerts received and analysts
employed.

Combining the cost and analyst estimates, a single analyst
working 8 hours a day, five days a week, 48 weeks a year,
at a rate of 8.5 alert reviews per hour, will produce a cost of
$9.89 per alert. By multiplying the number of false positive
alerts produced at every filter configuration, we can obtain an
estimated cost at the associated false positive rate.

b) False Negative Costs – Electrical Utility: A false
negative for an electrical utility could result in a wide range
of outcomes, however in this study we realize false negatives
as power outages. While it would be possible to use load lost
data combined with electricity costs to determine the total cost
of an outage, a study by Sullivan et al. [20] found that duration
and timing of outages was more important than load lost.
Sullivan aggregated a number of surveys to estimate the cost
of power outages by building type (i.e. residential, commercial
and industrial), as well as outage duration. We are unable to
derive commercial and industrial buildings in a specified region,
however, U.S. Census data [19] from the American Community
Survey records residential household estimates by county and
state. Multiplying the household count by the expected cost
of a residential outage, we can estimate a conservative portion
of the total outage cost. Table III shows the estimated false
negative cost associated with a momentary electrical outage in
four different geographic locations.

c) False Negative Costs – Additive Manufacturing: Ad-
ditive manufacturing requires a series of delicate tasks to be
performed in sequence, with minimal margin of error. A false
negative in an additive manufacturing OT environment could
disrupt one or more of these processes, resulting in a complete
loss of the product. For metal additive manufacturing, some
common techniques use a laser or electron beam to melt the



Location Households Cost
Claremore, OK 7,742 $30,193.80
Tulsa, OK 253,909 $990,245.10
Oklahoma County, OK 352,544 $1,374,921.60
Dallas, TX 572,194 $2,231,556.60

TABLE III: The estimated residential cost of a momentary
power outage based on the households of four different ge-
ographic areas in the midwest United States.

powder in layers, slowly building up the final product. The
printing process itself takes a significant period of time to
complete, and post-processing steps are often required, such
as a chemical debinding wash and heat treatment. The size,
complexity, material, and technique used in the manufacturing
process all affect the total manufacturing duration.

For this paper, we focus on the initial printing step to
estimate the cost associated with a false negative disruption.
Specifically, we measure the cost of material loss as a result
of a print job disruption. We investigated four production scale
printers from three companies [21]–[24], all of which advertise
their print speed in their technical documentation. The cost of
materials is based on the price we paid during setup of the test
bed environment, with the most expensive material per cubic
centimeter being titanium alloy (Ti-6Al-4V) at $1.17/cm3. If
we assume the job was disrupted one hour into the print job, and
the material used was titanium, we calculate the false negative
costs seen in Table IV.

Printer Speed (cm3/hour) Cost (hourly)
P-50 12,000 $14,040.00
Jet Fusion 5200 5,058 $5,917.86
X-160 3,120 $3,650.40
TruPrint-5000 180 $210.60

TABLE IV: The estimated cost of a titanium print job being
disrupted one hour into the print process.

V. RESULTS

With this information, we can calculate the combined cost
of false negatives and false positives, as well as the number of
analysts needed to investigate all alerts.

A. Synthetic Electric ICS Data

We pass the simulated electric utility traffic from Lemay
et al. through the anomaly-based IDS, assigning an anomaly
score to each alert. We then perform the economic model
filter configuration process starting at a threshold of 0.00,
and incrementing by 0.01 up to 1.00, for 1,001 individual
thresholds. The false positive rate and false negative rate at
each filter configuration is then calculated, producing the ROC
curve in our economic model.

Using this trained filter, we now provide a set of malicious
alert probabilities to determine the optimal configuration of
hypothetical SOC filters. We consider six different annual
probabilities of a momentary outage occurring, given the SOC
encounters 2,000 alerts every 24 hours: 99%, 75%, 50%, 25%,

10%, and 1%. For each of these probabilities, we consider a
SOC located in each of our four geographic locations, with
a false negative cost equal to a momentary outage in the
respective city. This gives us twenty four unique optimal filter
configurations based on the scenario.

Fig. 2: Detection rate versus false positive rate for each prob-
ability and geographic location.

The ROC curve and all associated optimal filter configura-
tions are shown in Figure 2, with each plot belonging to a single
geographic location. For Claremore (a suburb of Tulsa), which
is the smallest area by a large margin, we observe a heavy bias
towards reducing false positives due to its relatively low outage
cost. This is highlighted at the 1% and 10% probabilities,
where the optimal configuration is to label all alerts as benign.
Additionally, at no probability does the Claremore filter surpass
a 50% detection rate. In contrast, for the largest area, Dallas,
we can see that the cost of a false negative, even with the lowest
annual probability, is too large to ignore, favoring a detection
rate of ≈ 40%.

The differences in errors between each scenario are quanti-
fied in Table V. Each row of the table shows the associated
false positive cost, false negative cost, and necessary analysts
for a given scenario, split by city and probability. The inaction
shown by the Claremore filter at low annual probability is better
understood when observing their expected costs in the table.
At a 1% probability the annual expected cost is $303.46 by



City P Analysts FN Cost FP Cost

D
al

la
s

99% 3 $- $406,710.92
75% 3 $- $406,714.51
50% 2 $180,209.21 $193,741.35
25% 2 $74,793.62 $193,741.56
10% 1 $120,983.01 $5,216.46
1% 1 $13,391.41 $1,761.92

O
K

C
ou

nt
y

99% 3 $- $406,710.92
75% 3 $- $406,714.51
50% 2 $111,031.70 $193,741.35
25% 1 $172,808.80 $31,566.03
10% 1 $74,540.86 $5,216.46
1% 1 $8,250.81 $1,761.92

Tu
ls

a

99% 3 $- $406,710.92
75% 2 $159,934.20 $193,740.98
50% 2 $79,967.18 $193,741.35
25% 1 $146,586.50 $5,216.46
10% 1 $53,685.77 $5,216.46
1% 1 $5,942.39 $1,761.92

C
la

re
m

or
e

99% 1 $71,548.31 $5,216.40
75% 1 $24,992.53 $1,761.91
50% 1 $12,496.28 $1,761.91
25% 1 $5,186.43 $1,761.92
10% 0 $3,181.23 $-
1% 0 $303.46 $-

TABLE V: Costs and analysts needed, broken down by geo-
graphic location and annual probability of malicious alerts (P).

allowing momentary outages to occur. At both 1% and 10%
probability, the optimal configuration incurs no false positive
cost, because it hires no analysts to review any alerts. The
probability of a malicious alert must increase to 25% before the
Claremore SOC realizes a benefit from filtering traffic related
to momentary outages. At a maximum, Claremore will need to
hire only a single analyst, regardless of probability.

For larger geographic areas, we see the opposite behavior at
higher probabilities of outages. For Tulsa, Oklahoma County,
and Dallas, the 99% probability of seeing an outage results
in such a large expected false negative cost that a single false
negative alert is unacceptable. While the expected loss from a
false negative may be large, the increase in false positive alerts
is made clear by the number of analysts required to manage
this influx of spurious alerts. The three largest cities must all
employ three full time analysts to handle this increase in alerts.
Dallas and Oklahoma County, the two larger cities, must also
employ three full time analysts at 75% annual probability.

B. Additive Manufacturing

To train the economic model filter on additive manufacturing
data, we pass our testbed data through the anomaly-based IDS
using the same 1,0001 thresholds as in the electric utility
environment. We also use the same six hypothetical annual
probabilities of a malicious alert. However, we reduce the alerts
encountered in a single day to 10 alerts. In our electric utility
environment, the alerts received are an aggregate across the
entire ICS, while in this scenario we are focusing on a small
portion of the additive manufacturing ICS, made up of an
individual printer, debinder, furnace and MTU. The ROC curves
from each of the four printers can be seen in Figure 3.

The fastest printer is the P-50 printer from Desktop Metal
[23], able to process up to 12,000 cubic centimeters per hour.

Fig. 3: Detection rate versus false positive rate for each prob-
ability and printer.

The cost of materials processed in a single hour is enough
to warrant some caution in the optimal filter at 50%, 75%,
and 99% annual probability. At each of these probabilities, the
optimal filter represents a detection rate over 75%, despite a
false positive rate near 25%. This is significantly more cautious
than the TruPrint-5000 printer, which processes material so
slowly, that it consistently operates at a configuration with
minimal filtering, even at a malicious alert probability of 99%,
when a disruption is nearly guaranteed to occur.

Similar to the electrical ICS, we can see these results
quantified in Table VI. The most obvious difference between
the electrical ICS and the additive manufacturing ICS is the
lack of false positive costs. The reduction in false negative costs
relative to the electrical ICS results in the optimal configuration
from Equation 1 becoming more heavily dependent on the
false positive cost. A single false positive in the 10 daily
alerts will cost the SOC over $3,000 annually, which is more
expensive than the false negative cost of any printer at a
probability lower than 25%. Another difference between the
two OT environments, is that the additive manufacturing never
operates at a 0% detection rate, therefore always employing
an analyst. This is the result of the optimal filter configuration
representing a threshold in which some malicious alerts are
accurately identified without introducing any false positives.



Printer P Analysts FN Cost FP Cost

P-
50

99% 1 $9,605.05 $7,513.51
75% 1 $2,892.68 $7,520.14
50% 1 $1,446.48 $7,521.57
25% 1 $3,984.32 $-
10% 1 $1,459.25 $-
1% 1 $139.20 $-

Je
t

Fu
si

on
52

00 99% 1 $4,048.53 $7,513.51
75% 1 $5,209.59 $2,850.77
50% 1 $4,046.13 $-
25% 1 $1,679.39 $-
10% 1 $615.07 $-
1% 1 $58.67 $-

X
-S

er
ie

s

99% 1 $2,497.31 $7,513.51
75% 1 $4,991.20 $-
50% 1 $2,495.83 $-
25% 1 $1,035.92 $-
10% 1 $379.41 $-
1% 1 $36.19 $-

Tr
uP

ri
nt

-5
00

0 99% 1 $956.14 $-
75% 1 $287.95 $-
50% 1 $143.99 $-
25% 1 $59.76 $-
10% 1 $21.89 $-
1% 1 $2.09 $-

TABLE VI: Costs and analysts needed, broken down by printer
and annual probability of malicious alerts (P).

VI. CONCLUSION

Cybersecurity is often expensive, but particularly crucial in
OT environments affecting critical infrastructure. Despite its
importance and expense, very few approaches have explicitly
incorporated these costs in tuning defenses. In this paper, we
have presented an economically-informed method for classify-
ing anomaly-based IDS alerts. We collected synthetic network
traffic for an electric utility and an additive manufacturing
facility. This traffic is passed through an IDS to score alerts
and labels each based on a series of thresholds in the economic
model filter optimization process. We construct cost estimates
for classification errors using data collected from a combination
of previous studies, surveys, and government reports.

We treat false negatives in both environments as high impact,
while considering a false positive to be a low impact waste of
resources. In reality, false negatives range in their disruptive
potential, and many false positives impose large opportunity
costs.

By incorporating the false positive cost, as well as the
false negative cost and probability of each malicious traffic
type, a security analyst is able to more accurately identify
the cost-effective configuration for an IDS. Additionally, by
incorporating SOC analyst review rates, we provide a method
for estimating the quantity of SOC analysts required to respond
to different scenarios.
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