Examining the Impact of Website Take-down on Phishing

Tyler Moore and Richard Clayton

University of Cambridge Computer Laboratory

APWG eCrime Researchers Summit Oct. 4, 2007, Pittsburgh, PA, USA

Outline

- Mechanics of phishing
- Rock-phish attacks
- Who's winning the phishing arm's race?
- Comparing performance of defenders

Outline

- 1 The mechanics of phishing
- 2 Rock-phish attacks
- 3 Who's winning the phishing arm's race?
- 4 Comparing performance of defenders

Technical requirements for phishing attacks

- Attackers send out spam impersonating banks with link to fake website
- Hosting options for fake website
 - Free webspace
 (http://www.bankname.freespacesitename.com/signin/)
 - Compromised machine (http://www.example.com/~user/images/www.bankname.com/)
 - Registered domain (bankname-variant.com) which then points to free webspace or compromised machine
- Personal detail recovery
 - Completed forms forwarded to a webmail address
 - Stored in a text file on the spoof website

Defending against phishing attacks

- Proactive measures
 - Web browser mechanisms to detect fake sites, multi-factor authentication procedures, restricted top-level domains, etc.
 - Not the focus of this paper
- Reactive measures
 - Banks tally phishing URLs
 - Reported phishing URLs are added to a blacklist, which is disseminated via anti-phishing toolbars
 - Banks send take-down requests to the free webspace operator or ISP of compromised machine
 - If a malicious domain has been registered, banks ask the domain name registrar to suspend the offending domain

Data collection methodology

- Phishing website availability
 - Several organizations collate phishing reports; we selected reports from PhishTank
 - PhishTank DB records phishing URLs and relies on volunteers to confirm whether a site is wicked
 - 33710 PhishTank reports overs 8 weeks early 2007
 - Unfortunately, PhishTank does not indicate exactly when sites are removed and is regularly misled when sites are not disabled, but rather replaced with generic pages
 - We constructed our own testing system to continuously query sites until they stop responding or change
- Caveats to our data collection
 - Sites removed before appearing in PhishTank are ignored
 - We do not follow web-page redirectors

Outline

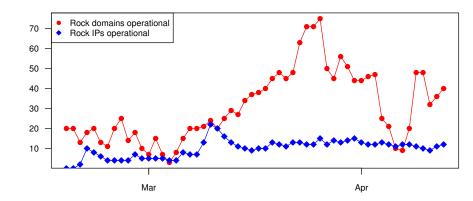
- 1 The mechanics of phishing
- Rock-phish attacks
- 3 Who's winning the phishing arm's race?
- 4 Comparing performance of defenders

Rock-phish attacks are different!

- 'Rock-phish' gang operate different to 'ordinary' phishing sites
 - Purchase several innocuous-sounding domains (e.g., lof80.info)
 - Send out phishing email with URL http://www.volksbank.de.netw.oid3614061.lof80.info/vr
 - Gang-hosted DNS server resolves domain to IP address of one of several compromised machines
 - Compromised machines run a proxy to a back-end server
 - Server loaded with many fake websites (around 20), all of which can be accessed from any domain or compromised machine
 UNIVERSITY OF

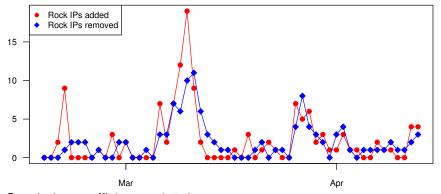
Rock-phish attacks (cont'd.)

- Rock-phish strategy is more resilient to failure
 - Dynamic pool of domains maps to another pool of IP addresses
- Also increase confusion by splitting the attack components over disjoint authorities
 - Registrars see non-bank domains
 - Compromised machine owners don't see bank webpages
- Wildcard DNS confuses phishing-report collators
 - 18 680 PhishTank reports during 8 week sample (52.6% of all reports)
 - Reduces to 421 unique domains

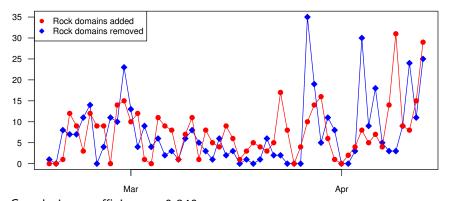


'Fast-flux' phishing domains

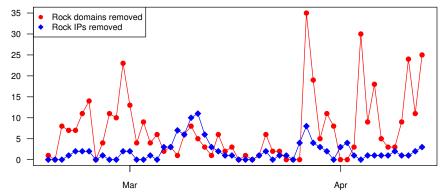
- Rock-phish gang's strategy is evolving fast
- In a fast-flux variant, domains resolve to a set of 5 IP addresses for a short time, then abandon them for another 5
- Burn through 400 IP addresses per week, but the upside (for the attacker) is that machine take-down becomes impractical
- Fast-flux strategy demonstrates just how cheap compromised machines are



Rock-phish site activity per day


New and removed rock-phish IPs per day

Correlation coefficient r: 0.740 Synchronized \implies automated replenishment


New and removed rock-phish domains per day

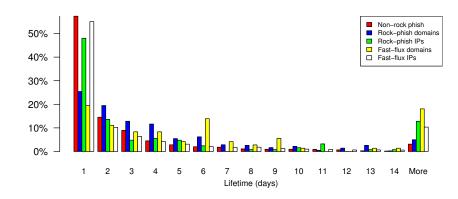
Correlation coefficient r: 0.340Unsynchronized \implies manual replenishment

Rock-phish domain and IP removal per day

Correlation coefficient r: 0.142 Unsynchronized \implies uncoordinated response

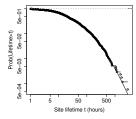
Outline

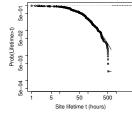
- 1 The mechanics of phishing
- 2 Rock-phish attacks
- 3 Who's winning the phishing arm's race?
- 4 Comparing performance of defenders

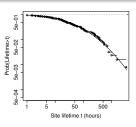


Phishing-site lifetimes

		Lifetime (hours)		
	Sites	Mean	Median	
Non-rock	1 695	61.69	19.52	
Rock domains	421	94.68	55.14	
Rock IPs	125	171.8	25.53	
Fast-flux domains	57	196.2	111.0	
Fast-flux IPs	4 287	138.6	18.01	

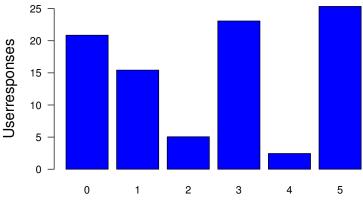



Histogram of phishing-site lifetimes



And now for some curve fitting

	Lognormal				Kolmogorov-Smirnov	
	μ	Std err.	σ	Std err.	D	p-value
Non-rock	3.011	0.03562	1.467	0.02518	0.03348	0.3781
Rock domains	3.922	0.05966	1.224	0.04219	0.06289	0.4374
Rock IPs	3.434	0.1689	1.888	0.1194	0.09078	0.6750

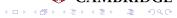


User response to phishing

- Webalizer data
 - Web page usage statistics are sometimes set up by default in a world-readable state
 - Gives daily updates of which URLs are visited
 - We can view how many times a 'thank you' page is visited
 - We automatically checked all sites reported to PhishTank for the Webalizer package, revealing over 700 sites
- On-site text files
 - We retrieved around two dozen text files with completed user details from phishing sites
 - 200 of the 414 responses appeared legitimate

User responses to phishing sites over time

Days after phish reported


Estimating the cost of phishing attacks

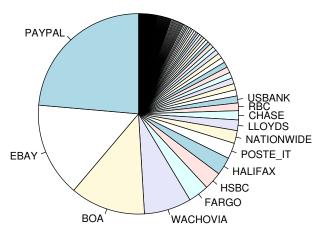
- Having measured how many phishing sites exist, how long they stick around, and how many people give away their details, we can estimate the losses due to phishing
- DISCLAIMER: Cost is the product of several fuzzy estimates
 - 1 438 banking phishing sites implies 9 347 p.a.
 - 2 61 hours on average implies 30 victims per site
 - Gartner estimate cost of identity theft to be \$572 per victim
 - 9347 * 30 = 280410 victims * \$572 = \$160.4 m

Estimating the cost of phishing attacks (cont'd.)

- Estimate ignores rock-phish and fast-flux
 - Since rock-phish account for a large proportion of spam, we assume that they are at least as successful as ordinary phishing sites
 - Our final minimum cost estimate: \$320m p.a.
- Gartner estimates 3.5m people fall victim to identity theft at a cost of \$2Bn p.a.
 - Part of the disparity can be accounted for our conservative counting of sites
 - The difference can also be accounted for by other types of identity theft (theft of merchant databases, Trojan programs operating keyloggers, etc.)
 UNIVERSITY OF

Outline

- The mechanics of phishing
- 2 Rock-phish attacks
- 3 Who's winning the phishing arm's race?
- 4 Comparing performance of defenders

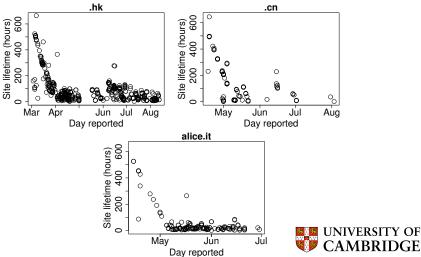


Breaking down site lifetimes

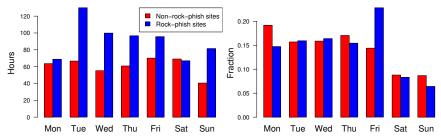
- Phishing site lifetimes vary greatly, but can we make sense of the differences?
 - We have already established that the rock-phish gang are more effective than other attackers
 - Do some banks perform better than others?
 - Do some ISPs respond better than others?
 - Does the timing of attacks make any difference?
- Identifying exceptional performers (both good and bad) could help encourage improved response times

Number of phishing sites per bank

Phishing-site lifetimes per bank (only banks >= 5 sites)


Take-down performance of free-website hosts

- Some phishing attacks are hosted on free webspace
- Overall, these sites are removed more quickly than sites hosted on compromised web servers
- But significant variation remains


	Sites	Mean lifetime	Median lifetime
yahoo.com	174	23.79 hours	6.88 hours
doramail	155	32.78 hours	18.06 hours
pochta.ru	1 253	33.79 hours	16.83 hours
alice.it	159	52.43 hours	18.83 hours
by.ru	254	53.11 hours	38.16 hours

'Clued-up' effect on free host & registrar take-down times

Do weekends adversely impact phishing site removal?

Phishing site lifetime by weekday (left) and number of reported phishing sites by weekday (right)

Discussion

- Collusion dividend for rock-phish gang
 - Cooperation has strengthened the gang: pooling resources to swap between machines while impersonating many banks per domain
 - Should have attracted more attention from the banks, but perhaps sum-of-efforts nature of the cooperation enables banks to free-ride off each other's vigilance
- Countermeasures
 - Direct tactics like reducing the # of compromised machines available or rate-limiting domain registration appears futile
 - Transparency could help: publishing take-down performance by bank, ISP and country may pressure improvements
 - Increasing awareness to targeted banks of rock-phish tactics may trigger cooperation
 UNIVERSITY OF CAMBRIDGE

Conclusions

- We have established that there is wide disparity in phishing site lifetimes
 - Long-tailed distribution of lifetimes implies that a few long-lived sites are undermining the effectiveness of take-down countermeasures
 - Some banks and ISPs are doing better than others
 - Disparity also suggests there is room for improvement through better monitoring
- We have also seen that attackers innovate: rock-phish sites outlive ordinary phishing sites through clever adaptations in strategy
- For more, see http://www.cl.cam.ac.uk/~twm29/ and
 http://www.lightbluetouchpaper.org/
 UNIVERSITY OF

