The Phish-Market Protocol

Securely Sharing Attack Data
Between Competitors

Tal Moran Tyler Moore

Center for Research on Computation and Society
Harvard University
‘HARVARDFinanciaI Crypto, Tenerife, January 25, 2010

School of Engineering
and Applied Sciences

Outline

Motivation
Requirements & Challenges
The Phish-Market Protocol

— Concepts, not math

Implementation & performance

Motivation

* Phishing is a serious problem for banks

* Phishers set up fake websites:
— pretend to be banks

— link to fake websites in
spam

— scam users into entering
passwords

Vi
&5

Motivation

Banks hire take-down’ companies to
patrol internet for phishing sites

— Aggregate multiple URL feeds
— Read from public sources (e.g., APWG)

— Proprietary sources (e.g., spam honey traps)
* Considered competitive advantage

Take-down companies compete for clients

Moore and Clayton estimate $330,000,000
cost of refusing to share data

Ordinary phishing sites Mean lifetime (hours)

(N 2N
\o/ &/

— For these two companies alone!

The Proposal

* Create a market for phishing data
— Compensate companies for sharing data
— Must take competitive interests into account

Requirements & Challenges

* Buyer learns only URLs that phish client banks
* Seller cannot learn who the Buyer’s clients are
* Buyer must pay for new each URL learned
* Buyer doesn’t pay for URLs already known

i In Practice:

<I Generic solutions
extremely inefficient

* Sharing cangot introduce significant delays

Protocol Ideas

* |dea: “pay” with encrypted “coins”
* Reveal only payment totals

— Can’t tell which URLs were those “sold”

* Relaxations for efficiency:
— Buyer learns “tags” (i.e. banks) of all Seller URLs

— Buyer learns which URLs already known to Seller
(but does not pay for them)

1.

2.

Transaction Overview

Seller offers URL to Buyer
— Oblivious Transfer

Buyer sends encrypted payment
— Homomorphic Commitment

Buyer “proves” payment is good
— Zero-Knowledge Proof

Buyer “proves” he knew URL
— Zero-Knowledge Proof

Seller’s view is always the same, regardless of whether the
payment is real or fake!

The Phish-Market Protocol

* Meet Sally and Bob:

Sally the Seller
(’)
Bob the Buyer ‘ t

Commitment Schemes

e Commitment to a value:

— Commit now
* “Hiding”: Sally doesn’t learn contents

Think of this as
Encryption

— Reveal later
* “Binding”: Bob can’t change the contents

— Bob commits in advance to the URLs he knows

Zero-Knowledge Equivalence Proofs

* Prove two commitments are the same
 Don’t reveal anything else

* To prove payment is good: “payment=C(1)”
* To prove Bob already knew URL

Zero-Knowledge Equivalence Proofs
with trapdoor

 Sometimes Bob shouldn’t pay
e Sometimes Bob didn’t know URL beforehand

* Trapdoor lets Bob use secret key to fake proof
* Sally can’t tell the difference

Oblivious Transfer (OT)

* Sally prepares two encrypted items
* Bob gets to choose only one encryption key

o |\t
— Either learn URL or get extra “proof key”

e Sally doesn’t learn which key Bob chooses
* assume keys are indistinguishable

Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening them

This is a payment
commitment

(A chest won't fit in the piggy bank)

Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening

— Can reveal sum without revealing anything else

High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL Choice
2" proof key OT result

e = Commitment to payment
u = Commitment to URL

ZK Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin
committed set

High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL Don’t want URL
2" proof key OT

e = C(0)
U = C(Fake previously known URL)

ZK Proof 1
e=C(1)
ZK Proof 2
u=C(URL)

Proof 3: uisin

committed set

High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL ~ Want URL
2" proof key OT URL /

e = C(1)
U = C(Fake previously known URL)

ZK Proof 1
e=C(1)

u=C(URL)
— —
committed set

High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL
2" proof key OT

e = C(0)

Want URL

U = C(URL)

ZK Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin

—_— —

committed set

Formal Security Guarantees

* For Seller:
— Equivalent to an “ideal world” with a trusted third
party.
* For Buyer:

— Seller doesn’t learn anything about Buyer’s secrets
except what is revealed by aggregate payment.

* Theorem: the protocol is secure!

Our Implementation

e Pedersen Commitment
e Naor-Pinkas Oblivious Transfer

— (uses “Random Oracle”)
* Both based on hardness of discrete log in a generic
group

* can be implemented over Elliptic-Curves or using modular
arithmetic

Performance

Elliptic-Curve based Java implementation
Ran experiments using real data from 2 take-

down companies
(2 weeks)

~10000 URLs
Avg. 5 sec delay.
Max. 35 sec.

100.00% 1—= —
| e
| e
80.00%- | /
|/ "
P
60.00% - J /
(il
ar
l,
|.
40.00% 4 |
|
I
I . N
— ——— Per-transaction processing time
20.00% o | Queue delay
‘ Total delay
U.DDD.-"IG T 1

rrrrrrrrrrrrrorcrrrrrrrrrrrrrornrd
1 4 7 10 13 16 19 22 25 28 31 34
Time In seconds

The Qilin Crypto SDK

(shameless plug for my absent co-author)<_ ﬁﬁ%
&
* Java SDK for rapid prototyping of &%
cryptographic protocols m

* API follows concepts from theoretical crypto

* Currently implements all building-blocks of
Phish-Market Protocol

— Generic implementation of El-Gamal, Pedersen
— Instantiations over elliptic curves and over Z*IO
— Automatic Fiat-Shamir converter for 2 -Protocols

* Get Qilin: http://qilin.seas.harvard.edu/

Open Questions

Solve related data-sharing problems?

— Much easier if we don’t need to handle previously
known URLs

Implement generic secure computation to
prevent tag leaks

Side-channels?

Will any take-down companies or banks adopt
our protocol?

Thank You

Proof 3: Merkle Trees

e Efficient commitment to large sets
— Send only the root of the tree:

* Proofs are not zero-knowledge

— We use commitments as leaves
— Add “chaff” commitments for fake URLs

/K Equivalence Proof
(for homomorphic commitments)

e To prove: C(x) = C(y)

— Reduce to “proof of commited value”:

— Prove: C(x)/C(y)=C(x-y) ~ C(0)
* Standard protocol to prove C(x) = C(0):
commitment
1. Prover commits: C(b), sends b

2. \Verifier sends random challenge: a
3. Prover opens commitment: C(ax+b)=C(x)2C(b)

« Value must be: b \ Note:
X+b#b arithmetic is

* If x#20, w.h.p. (over a) we have: a

* If Prover knows a, can cheat by computing
0’=ax+b in step 1.

modular!

Trapdoor ZK Proofs

e ZK 2 - Protocol:
1. Prover commits
2. Verifier sends a random challenge
3. Prover opens commitment

* Generic transformation to add trapdoor:
1. Prover commits
2. Challenge computed using Coin-Flipping protocol
3. Prover opens commitment

* We use Coin-Flipping protocol with trapdoor.

Blum Coin-Flipping
(with trapdoor)

* Use a commitment to flip a coin:

— Bob chooses a random value
* He’s committed, but Sally doesn’t know the value

— Sally chooses a random value
— Bob opens his commitment.
— The value of the coin is the sum.

* Bob can cheat if he can equivocate on commitment

