
The Phish-Market Protocol

Securely Sharing Attack Data
Between Competitors

Tal Moran Tyler Moore

Center for Research on Computation and Society
Harvard University

Financial Crypto, Tenerife, January 25, 2010

Outline

• Motivation

• Requirements & Challenges

• The Phish-Market Protocol

– Concepts, not math

• Implementation & performance

Motivation

• Phishing is a serious problem for banks

• Phishers set up fake websites:

– pretend to be banks

– link to fake websites in
spam

– scam users into entering
passwords

Motivation
• Banks hire `take-down’ companies to

patrol internet for phishing sites
– Aggregate multiple URL feeds
– Read from public sources (e.g., APWG)
– Proprietary sources (e.g., spam honey traps)

• Considered competitive advantage

• Take-down companies compete for clients
• Moore and Clayton estimate $330,000,000

cost of refusing to share data

– For these two companies alone!

The Proposal

• Create a market for phishing data

– Compensate companies for sharing data

– Must take competitive interests into account

Solved!
(In Theory):

“Secure
Computation”

• Buyer learns only URLs that phish client banks

• Seller cannot learn who the Buyer’s clients are

• Buyer must pay for new each URL learned

• Buyer doesn’t pay for URLs already known

• Sharing cannot introduce significant delays

Requirements & Challenges

In Practice:
Generic solutions

extremely inefficient

Protocol Ideas

• Idea: “pay” with encrypted “coins”

• Reveal only payment totals

– Can’t tell which URLs were those “sold”

• Relaxations for efficiency:

– Buyer learns “tags” (i.e. banks) of all Seller URLs

– Buyer learns which URLs already known to Seller
(but does not pay for them)

Transaction Overview

1. Seller offers URL to Buyer
– Oblivious Transfer

2. Buyer sends encrypted payment
– Homomorphic Commitment

3. Buyer “proves” payment is good
– Zero-Knowledge Proof

4. Buyer “proves” he knew URL
– Zero-Knowledge Proof

• Seller’s view is always the same, regardless of whether the
payment is real or fake!

The Phish-Market Protocol

• Meet Sally and Bob:

Sally the Seller

Bob the Buyer

• Commitment to a value:
– Commit now

• “Hiding”: Sally doesn’t learn contents

– Reveal later
• “Binding”: Bob can’t change the contents

– Bob commits in advance to the URLs he knows

Commitment Schemes

Think of this as
Encryption

• Prove two commitments are the same

• Don’t reveal anything else

• To prove payment is good: “payment=C(1)”

• To prove Bob already knew URL

Zero-Knowledge Equivalence Proofs

• Sometimes Bob shouldn’t pay

• Sometimes Bob didn’t know URL beforehand

• Trapdoor lets Bob use secret key to fake proof

• Sally can’t tell the difference

Zero-Knowledge Equivalence Proofs
with trapdoor

Oblivious Transfer (OT)

• Sally prepares two encrypted items

• Bob gets to choose only one encryption key

– Either learn URL or get extra “proof key”

• Sally doesn’t learn which key Bob chooses
• assume keys are indistinguishable

Homomorphic Addition

• Special commitment scheme:

– Can add commitments without opening them

This is a payment
commitment

 (A chest won’t fit in the piggy bank)

Homomorphic Addition

• Special commitment scheme:

– Can add commitments without opening

– Can reveal sum without revealing anything else

High-Level Protocol Summary
Commit to previously known URLs

OT
URL

2nd proof key

URL Tag, C(URL) and single ZK proof key

Choice

ZK Proof 1
e=C(1)

e = Commitment to payment
u = Commitment to URL

ZK Proof 2
u=C(URL)

Proof 3: u is in
committed set

result

High-Level Protocol Summary
Commit to previously known URLs

OT
URL

2nd proof key

URL Tag, C(URL) and single ZK proof key

Choice

ZK Proof 1
e=C(1)

e = Commitment to payment
u = Commitment to URL

ZK Proof 2
u=C(URL)

Proof 3: u is in
committed set

result

Don’t want URL

2nd proof key

C(0)

C(Fake previously known URL)

ZK Proof 1
e=C(1)

ZK Proof 2
u=C(URL)

High-Level Protocol Summary
Commit to previously known URLs

OT
URL

2nd proof key

URL Tag, C(URL) and single ZK proof key

Choice

ZK Proof 1
e=C(1)

e = Commitment to payment
u = Commitment to URL

ZK Proof 2
u=C(URL)

Proof 3: u is in
committed set

result

Want URL

URL

C(1)

C(Fake previously known URL)

Not in list

ZK Proof 1
e=C(1)

ZK Proof 2
u=C(URL)

High-Level Protocol Summary
Commit to previously known URLs

OT
URL

2nd proof key

URL Tag, C(URL) and single ZK proof key

Choice

ZK Proof 1
e=C(1)

e = Commitment to payment
u = Commitment to URL

ZK Proof 2
u=C(URL)

Proof 3: u is in
committed set

result

Want URL

URL

C(0)

C(URL)

Is in List

ZK Proof 1
e=C(1)

ZK Proof 2
u=C(URL)

Formal Security Guarantees

• For Seller:

– Equivalent to an “ideal world” with a trusted third
party.

• For Buyer:

– Seller doesn’t learn anything about Buyer’s secrets
except what is revealed by aggregate payment.

• Theorem: the protocol is secure!

Our Implementation

• Pedersen Commitment

• Naor-Pinkas Oblivious Transfer

– (uses “Random Oracle”)

• Both based on hardness of discrete log in a generic
group

• can be implemented over Elliptic-Curves or using modular
arithmetic

Performance

• Elliptic-Curve based Java implementation

• Ran experiments using real data from 2 take-
down companies
 (2 weeks)

• ~10000 URLs

• Avg. 5 sec delay.

• Max. 35 sec.

The Qilin Crypto SDK
(shameless plug for my absent co-author)

• Java SDK for rapid prototyping of
cryptographic protocols

• API follows concepts from theoretical crypto

• Currently implements all building-blocks of
Phish-Market Protocol
– Generic implementation of El-Gamal, Pedersen

– Instantiations over elliptic curves and over  *
p

– Automatic Fiat-Shamir converter for -Protocols

• Get Qilin: http://qilin.seas.harvard.edu/

Open Questions

• Solve related data-sharing problems?

– Much easier if we don’t need to handle previously
known URLs

• Implement generic secure computation to
prevent tag leaks

• Side-channels?

• Will any take-down companies or banks adopt
our protocol?

Proof 3: Merkle Trees

• Efficient commitment to large sets
– Send only the root of the tree:

• Proofs are not zero-knowledge
– We use commitments as leaves

– Add “chaff” commitments for fake URLs

ZK Equivalence Proof
(for homomorphic commitments)

• To prove: C(x)  C(y)
– Reduce to “proof of commited value”:
– Prove: C(x)/C(y)=C(x-y)  C(0)

• Standard protocol to prove C(x)  C(0):
1. Prover commits: C(b), sends b
2. Verifier sends random challenge: a
3. Prover opens commitment: C(ax+b)=C(x)aC(b)

• Value must be: b

• If x≠0, w.h.p. (over a) we have: ax+b≠b
• If Prover knows a, can cheat by computing

b’=ax+b in step 1.

Note:
arithmetic is

modular!

Doesn’t open
commitment

Trapdoor ZK Proofs

• ZK - Protocol:
1. Prover commits

2. Verifier sends a random challenge

3. Prover opens commitment

• Generic transformation to add trapdoor:
1. Prover commits

2. Challenge computed using Coin-Flipping protocol

3. Prover opens commitment

• We use Coin-Flipping protocol with trapdoor.

• Use a commitment to flip a coin:
– Bob chooses a random value

• He’s committed, but Sally doesn’t know the value

– Sally chooses a random value
– Bob opens his commitment.
– The value of the coin is the sum.

• Bob can cheat if he can equivocate on commitment

Blum Coin-Flipping

756 124
756

+ =880

(with trapdoor)

