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Motivation

* Phishing is a serious problem for banks

* Phishers set up fake websites:
— pretend to be banks

— link to fake websites in
spam

— scam users into entering
passwords
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Motivation

Banks hire take-down’ companies to
patrol internet for phishing sites

— Aggregate multiple URL feeds
— Read from public sources (e.g., APWG)

— Proprietary sources (e.g., spam honey traps)
* Considered competitive advantage

Take-down companies compete for clients

Moore and Clayton estimate $330,000,000
cost of refusing to share data

Ordinary phishing sites Mean lifetime (hours)
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— For these two companies alone!



The Proposal

* Create a market for phishing data
— Compensate companies for sharing data
— Must take competitive interests into account



Requirements & Challenges

* Buyer learns only URLs that phish client banks
* Seller cannot learn who the Buyer’s clients are
* Buyer must pay for new each URL learned
* Buyer doesn’t pay for URLs already known

i In Practice:

<I Generic solutions
extremely inefficient

* Sharing cangot introduce significant delays



Protocol Ideas

* |dea: “pay” with encrypted “coins”
* Reveal only payment totals

— Can’t tell which URLs were those “sold”

* Relaxations for efficiency:
— Buyer learns “tags” (i.e. banks) of all Seller URLs

— Buyer learns which URLs already known to Seller
(but does not pay for them)
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Transaction Overview

Seller offers URL to Buyer
—  Oblivious Transfer

Buyer sends encrypted payment
—  Homomorphic Commitment

Buyer “proves” payment is good
—  Zero-Knowledge Proof

Buyer “proves” he knew URL
—  Zero-Knowledge Proof

Seller’s view is always the same, regardless of whether the
payment is real or fake!



The Phish-Market Protocol

* Meet Sally and Bob:

Sally the Seller
(’ )
Bob the Buyer ‘ t




Commitment Schemes

e Commitment to a value:

— Commit now
* “Hiding”: Sally doesn’t learn contents

Think of this as
Encryption

— Reveal later
* “Binding”: Bob can’t change the contents

— Bob commits in advance to the URLs he knows



Zero-Knowledge Equivalence Proofs

* Prove two commitments are the same
 Don’t reveal anything else

* To prove payment is good: “payment=C(1)”
* To prove Bob already knew URL



Zero-Knowledge Equivalence Proofs
with trapdoor

 Sometimes Bob shouldn’t pay
e Sometimes Bob didn’t know URL beforehand

* Trapdoor lets Bob use secret key to fake proof
* Sally can’t tell the difference



Oblivious Transfer (OT)

* Sally prepares two encrypted items
* Bob gets to choose only one encryption key

o |\t
— Either learn URL or get extra “proof key”

e Sally doesn’t learn which key Bob chooses
* assume keys are indistinguishable



Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening them

This is a payment
commitment

(A chest won't fit in the piggy bank)




Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening

— Can reveal sum without revealing anything else



High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL Choice
2" proof key OT result

e = Commitment to payment
u = Commitment to URL

ZK Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin
committed set




High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL Don’t want URL
2" proof key OT

e = C(0)
U = C(Fake previously known URL)

ZK Proof 1
e=C(1)
ZK Proof 2
u=C(URL)

Proof 3: uisin

committed set



High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL ~ Want URL
2" proof key OT URL /

e = C(1)
U = C(Fake previously known URL)

ZK Proof 1
e=C(1)

u=C(URL)
— —
committed set



High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL
2" proof key OT

e = C(0)

Want URL

U = C(URL)

ZK Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin

—_— —

committed set




Formal Security Guarantees

* For Seller:
— Equivalent to an “ideal world” with a trusted third
party.
* For Buyer:

— Seller doesn’t learn anything about Buyer’s secrets
except what is revealed by aggregate payment.

* Theorem: the protocol is secure!



Our Implementation

e Pedersen Commitment
e Naor-Pinkas Oblivious Transfer

— (uses “Random Oracle”)
* Both based on hardness of discrete log in a generic
group

* can be implemented over Elliptic-Curves or using modular
arithmetic



Performance

Elliptic-Curve based Java implementation
Ran experiments using real data from 2 take-

down companies
(2 weeks)

~10000 URLs
Avg. 5 sec delay.
Max. 35 sec.
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The Qilin Crypto SDK

(shameless plug for my absent co-author)<\_ ﬁﬁ%
&
* Java SDK for rapid prototyping of &%
cryptographic protocols m

* API follows concepts from theoretical crypto

* Currently implements all building-blocks of
Phish-Market Protocol

— Generic implementation of El-Gamal, Pedersen
— Instantiations over elliptic curves and over Z*IO
— Automatic Fiat-Shamir converter for 2 -Protocols

* Get Qilin: http://qilin.seas.harvard.edu/




Open Questions

Solve related data-sharing problems?

— Much easier if we don’t need to handle previously
known URLs

Implement generic secure computation to
prevent tag leaks

Side-channels?

Will any take-down companies or banks adopt
our protocol?



Thank You




Proof 3: Merkle Trees

e Efficient commitment to large sets
— Send only the root of the tree:

* Proofs are not zero-knowledge

— We use commitments as leaves
— Add “chaff” commitments for fake URLs



/K Equivalence Proof
(for homomorphic commitments)

e To prove: C(x) = C(y)

— Reduce to “proof of commited value”:

— Prove: C(x)/C(y)=C(x-y) ~ C(0)
* Standard protocol to prove C(x) = C(0):
commitment
1. Prover commits: C(b), sends b

2. \Verifier sends random challenge: a
3. Prover opens commitment: C(ax+b)=C(x)2C(b)

« Value must be: b \ Note:
X+b#b arithmetic is

* If x#20, w.h.p. (over a) we have: a

* If Prover knows a, can cheat by computing
0’=ax+b in step 1.

modular!




Trapdoor ZK Proofs

e ZK 2 - Protocol:
1. Prover commits
2. Verifier sends a random challenge
3. Prover opens commitment

* Generic transformation to add trapdoor:
1. Prover commits
2. Challenge computed using Coin-Flipping protocol
3. Prover opens commitment

* We use Coin-Flipping protocol with trapdoor.



Blum Coin-Flipping
(with trapdoor)

* Use a commitment to flip a coin:

— Bob chooses a random value
* He’s committed, but Sally doesn’t know the value

— Sally chooses a random value
— Bob opens his commitment.
— The value of the coin is the sum.

* Bob can cheat if he can equivocate on commitment



