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Abstract

Vulnerabilities introduced through outdated third party libraries
remain a primary entry point for supply-chain attacks. To quan-
tify this risk at enterprise scale, we examined every public GitHub
repository maintained by the Forbes Global 2000. We identified
275 corporate accounts and cloned all 34 368 repositories (1.9 TB
of source code). Next, we used two open source tools to identify
vulnerable software libraries in the repositories. Syft lists every
library in a project creating software bills of materials (SBOMs),
while Grype checks each library for known vulnerabilities (CVEs
or GitHub Security Advisories). 11.7% of the 3,791,834 library oc-
currences have at least one known vulnerability. Surprisingly, we
observe active projects are almost as risky as inactive ones. More-
over, some vulnerable libraries affect many disparate projects. For
example, one vulnerability in the JavaScript package semver ap-
pears in 805 projects developed by 89 companies, and 43 firms still
publish code that contains the infamous Log4j RCE flaw. We publish
our full dataset the largest of its kind to help other researchers. We
also note limits of our approach and point to new rules that will
soon push more companies to create and share SBOMs.
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1 Introduction

Many large companies produce software. This software can be used
directly by the company, as well as by its customers. However,
we know relatively little about the security of such software. This
is one important way that information asymmetries manifest in
cybersecurity [11]. One of the policy interventions designed to
mitigate information asymmetry is the software bill of materials
(SBOMs). SBOMs identify software libraries utilized in code, which
should make it easier to identify outdated and vulnerable software
packages.

In this paper, we seek to measure the security of software pro-
duced by large firms. We focus on the open source code that is
developed and shared via GitHub. While such code represents only
a fraction of the code firms produce, we believe it is worth studying
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for two reasons. First, open-source code published on enterprise
repositories is important because the code can be utilized by others.
Second, such code may shed light on software security practices of
firms more broadly.

Lodash, a popular JavaScript library for working with objects
and arrays, illustrates how libraries can introduce security vulner-
abilities to firm-developed software. In July 2020, version 4.17.21
fixed a “prototype pollution” flaw (CVE-2020-8203). Prototype pol-
lution lets an attacker inject properties into JavaScript’s base object
prototype, potentially leading to crashes or arbitrary code execu-
tion. Even years after the patch, many “enterprise” products still
use older Lodash versions. For example Oracle telecom appliances
(Session Border Controller, Session Router, Subscriber Aware Load
Balancer) were still using the vulnerable library as noted in Ora-
cle’s April 2021 Critical Patch Update [23]. IBM Watson Machine
Learning Community Edition included TensorBoard built on the
old Lodash, risking crashes or code execution on GPU clusters if
its default port was left exposed [18]. These cases demonstrate that
even years after a fix remote code execution paths remain open if
system owners do not update their dependencies [26].

To measure such enterprise cybersecurity risks at scale, we in-
spect all firms in the Forbes Global 2000, a tally of the world’s
largest global firms. In each case, we determine whether the firm
has a public GitHub repository, finding 34 368 repositories in total.
We then download all code from these repositories and extract soft-
ware libraries identified through SBOM tools. We then check the
libraries for associated vulnerabilities.

We report on the software security practices of enterprise soft-
ware developers overall, and look for differences between projects
and firms. We distinguish between projects based on activity level.
Ultimately, we believe this work presents a valuable first step in
measuring the state of software supply chain security at the enter-
prise level.

Contributions

e We conduct a large-scale study of enterprise software supply
chain security.

e We introduce a way to measure firm-level cybersecurity
through its public software repositories.

e We leverage SBOM tools to measure the prevalence of po-
tentially vulnerable libraries utilized in software developed
by enterprises.

2 Data Collection Methodology

Our goal is to measure software supply chain risk for code devel-
oped by large enterprises. Figure 1 visualizes the tool chain we
have constructed to collect data for analysis. By identifying each
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Figure 1: (1) Data Collection and (2) Data Analysis Process.

repository’s core attributes, utilized libraries and vulnerabilities,
we construct a clear, end to end view of the enterprise software
supply chain.

2.1 Identifying Enterprise Software
Repositories

We focus on companies in the Forbes Global 2000, which tracks
the 2,000 largest publicly traded companies in the world. For each
firm, we searched for a matching GitHub profile. We identified
public profiles for 275 firms through a manual web search. We then
downloaded all 34 368 public repositories for these profiles.

Once we had the official accounts, we used the GitHub API to
harvest all available metadata repositories, stars, forks, followers,
URLs, email addresses, etc. With our list of repositories in hand,
we again tapped the GitHub API to gather detailed repository data
and then cloned each project for offline analysis, totaling over 1.9
terabytes of data.

We distinguish between repositories that are actively maintained
and utilized compared to those are no longer in active development.
The GitHub API reports key usage metrics, notably the creation and
last activity date, as well as the number of stars and forks. We deem
a project to be active if it has more than 40 forks, more than 40 stars
and has been updated within the last 30 days. 40 was selected as
the cutoff for each because it is the median value for forks among
all repositories. Using this criteria, 3 324 of the 34 368 repositories
are considered active. Moreover, 117 of the 275 profiles contain at
least one active repository.

We observed that, unsurprisingly, many of the most popular
public GitHub profiles belong to technology companies. This makes
sense, given that they are more likely to create software that others
can utilize. Therefore, we sought to distinguish between tech firms
and others, so that we might observe differences in their security
practices.

To identify tech companies, we checked each companies Stan-
dard Industry Classification (SIC) codes. We marked a company as
“tech” if its code starts with 35 (computers and related equipment),
36 (telecoms and electronics) or 38 (instruments and controls). We
also added companies in semiconductors (SIC 3674) and telephone
services (SIC 4813). For software and IT Services, we included all

codes from 7371 to 7379. This approach provides a method for dis-
tinguishing technology companies from non-technology companies
within the dataset.

2.2 Identifying Software Libraries

For each repository we are interested in the software libraries uti-
lized, as well as its version. We utilized Anchore Syft, a command-
line tool that scans codebases (or container images) and generates a
Software Bill of Materials (SBOM) listing every component and its
version. Syft reads operating system package databases for Debian
or Ubuntu, rpm-based systemsand for Alpine Linux [5, 6].

Table 1: Collected Data.

Metric Value
Profiles analyzed 275
Repositories analyzed 34,368
Libraries analyzed 3,791,834
GHSA found 444,439 (11.72%)

Syft also scans language manifest and lock files such as, package-
lock.json, yarn.lock, requirements.txt, Pipfile.lock, go.mod, go.sum,
Cargo.toml and Cargo.lock to list declared dependencies [7, 25].
Java archives (jar, war, ear, par, sar, nar, native image) and their
metadata files such as pom.xml are inspected to describe Java
components [10]. The continuous integration descriptors in the
github/workflows directory are cataloged to record the usage of
GitHub actions [16]. Finally, Syft can start with many types of
source, container images, directories, or compressed archives and
automatically pick the right catalogers for each [25].

2.3 Identifying Vulnerabilities in Libraries

Once we had that SBOM file, we fed it into Grype, another tool from
Anchore that compares each listed package against vulnerability
databases (CVE and GHSA) and flags any that are outdated or
carry known security issues. Grype then produces a new report
highlighting exactly which libraries need attention.

It identifies which parts of software have known risks by match-
ing versions against a vulnerability database. This helps developers
find and fix security issues before they can be exploited. Grype
can start from many kinds of input. It accepts SBOM files in Syft
JSON, SPDX, or CycloneDX format, or it can catalog packages itself
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Figure 2: Database schema.

from container images, OCI archives, Singularity images, regular
directoriesand single files [9]. Grype’s vulnerability database is
generated from public feeds such as Alpine SecDB, Amazon ALAS,
Debian CVE Tracker, GitHub Security Advisories, the National Vul-
nerability Database (NVD), Red Hat and SUSE OVAL data, Ubuntu
Security, Wolfi SecDB and others [8].

We recognize that Syft’s identification of software libraries and
Grype’s detection of vulnerabilities present in those libraries is
incomplete. Consequently, the subsequent analysis can be best
interpreted as a lower bound for the number of vulnerabilities
present in the enterprise software.

2.4 Final dataset

As a final result, we built an integrated dataset (outlined in Figure 2)
to perform high-level analysis. For each project we have: GitHub
metadata for profiles and repositories (creation date, last commit,
stars, forks, languages), the SBOM generated with Syft, which lists
all dependencies and their versions found in the project’s manifests
and the list of known vulnerabilities (CVE and GHSA) identified
by Grype for each component, with CVSS severity, disclosure date
with a link to the patch. This information is organized into five main
tables (figure 2), linked by foreign keys that allow cross analysis at
the project, company and industry levels. This is a nice database
of software supply chain security produced by large enterprises
and is a key starting point for future comparative and longitudinal
research in this critical area.

3 Analysis

We now discuss the data collected from repositories.

3.1 Profile coverage and utilization

We first report summary statistics on profile prevalence and reposi-
tory coverage. In total, 275 firms out of the Forbes Global 2000 have
public GitHub profiles (14%). Of these profiles, 31 have no public
repositories. These profiles maintain a median of 22 repositories
(mean 125). However, the top ten firms account for 50.70% (17 431
out of 34 368) of all repositories and 72.08% (2 396 out of 3 324) of
all active repositories.

Table 2 lists the top 20 firms with the most active repositories,
sorted accordingly. It also lists the median number of libraries
invoked by each repository, the number and percentage of reposi-
tories loading at least one vulnerable library, and the percentage of
a firm’s active repositories with at least one vulnerability present.
The bottom row reports the median figures for all firms with at

Table 2: Repository characteristics for top 20 organizations
with the most active repositories.
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Microsoft 7004 14 10 1814 26 74
Alphabet 2786 20 7 621 22 68
Alibaba Group 455 36 17 207 45 82
NVIDIA 587 24 9 115 20 57
Tencent Holdings 217 59 14 76 35 64
Meta Platforms 150 65 9 45 30 80
Intel 1318 7 7 177 13 59
Unity Software 782 12 5 112 14 23
Cloudflare 504 17 4 181 36 96
IBM 3628 2 15 1156 32 63
Shopify 1122 7 14 402 36 93
Apple 333 22 7 71 21 70
Netflix 232 27 5 56 24 87
Oracle 296 16 16 78 26 66
Coinbase 163 25 49 80 49 80
Salesforce.com 404 10 11 173 43 70
Spotify Technology 278 14 12 121 44 82
Uber 166 22 125 66 40 92
Adobe 1030 3 30 450 44 66
SAP 296 11 51 138 47 67

Median Organization 143 6 12 40 31 83

least ten repositories present. We can see, for example, that while
Microsoft has the largest absolute number of vulnerable reposi-
tories, as a proportion they fare slightly above average (26% vs
31%). We also observe that active repositories tend to have higher
vulnerability rates, which is true for all organizations.
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Table 3: Top 3 Ecosystems per Organization.

Org st 2nd 3rd
Microsoft npm python github-action
Alphabet npm rust-crate  python
Alibaba Group npm go-module  java-archive
NVIDIA go-module  rust-crate npm

Tencent Holdings  npm python rust-crate

3.2 Libraries and vulnerabilities

For each repository we obtained the dependency name, version,
and the Syft artifact type, which we refer to as the ecosystem. This
set includes both true package managers (npm, python) and other
ecosystems detected by Syft, such as GitHub Actions (github-action)
or Java archives (java-archive). Consequently, Table 3 reflects the
most prevalent Syft ecosystems, not only package managers, used
by organizations.

Of the 28 different ecosystems identified, npm is most widely
used across all organizations.

In total, we identified 3,791,834 libraries (median 13 and mean
110 libraries per repo) across all repositories this is the overall
number of library usages. Among these, around 106,503 represent
distinct libraries and 324,631 are unique when considering both the
library name and version ([library, version]).

We found that 444,439 libraries (11.72%) are affected by at least
one known CVE. As shown in Table 4, a total of 1,405 repositories
(221 of which are active) contain at least one library with a HIGH
severity vulnerability. In total there are 9,426 vulnerable repos with
median of 6 vulnerabilities per repo.

Table 4: Vulnerability Severity Counts per Repo

Severity Active Repos Inactive Repos

High 221 1,184
Medium 247 1,273
Low 212 893

How do vulnerability rates vary by firm? Table 5 shows the firm
profiles with the lowest and highest vulnerability rates. The left
columns show the best and worst performing technology compa-
nies, while the right columns show non-technology companies. We
included any firm profiles with at least ten repositories.

The worst overall performer among tech companies is Vodafone,
in which 57.9% of its repositories invoked libraries with known
active vulnerabilities. Over half of Zebra Technologies and 47%
Intuit repositories also had vulnerabilities, which is well above the
median rate of 27.9% for technology companies with at least ten
repositories. Among highly popular profiles, Spotify fared worst,
with 43.5% of its repositories having at least one vulnerable library
present.

On the other end of the spectrum, the three best-performing tech
companies Cadence Design, Quanta Computer, Info Edge India had
zero known vulnerabilities in repositories introduced by software
libraries. Among the most popular profiles, Microchip Technology
has a notably low vulnerability rate at 3.8%.

Moving to the non-technology companies, we observe that its
worst performers outpaced those in the technology space. Citigroup
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and ResMed had vulnerabilities in 75.0% of their repositories. But
there are also many secure non-tech firms, with two having no
observed vulnerabilities. The median vulnerability rate for reposi-
tories among non-tech firms with more than ten repositories was
higher than for tech firms at 32.3%, but only moderately so.

What can we take away from this analysis? First, there is wide
dispersion in security performance among firms based on this met-
ric. Second, the metric itself applies to many different types of firms,
which suggests it could be a promising measure to track over time.

3.3 Comparing vulnerability rates of active and
inactive repositories

Table 6: Vulnerability Summary for Active vs Inactive Repos-
itories.

Vuln Repos Total Repos % Vuln
3,324  31.05%
31,044  27.03%

Active repositories 1,032
Inactive repositories 8,394

Table 6 shows that 31.05% of active repositories and 27.03% of inac-
tive repositories contain at least one vulnerability. We had expected
inactive repositories to have more vulnerabilities, since they are
more likely to run outdated software packages.

A plausible explanation is that many enterprises publish code on
GitHub to signal openness or innovation and then largely ignore
it. Empirical studies of “abandoned repositories” back up this view.
Miller et al. observe that 15 % of the most downloaded npm packages
are abandoned within six years and that 82 % of the affected projects
never respond to the issue at all [21]. Avelino et al. deepen the
picture by analysing 1932 of the most starred GitHub projects
across six languages. They introduce the notion of a project’s truck
factor the smallest set of developers whose loss would stall the
project and classify a repository as abandoned when all those key
developers cease committing for at least twelve months. In their
dataset, 16 % of projects reached this point. Fewer than half of these
ever recovered and when recovery occurred it typically hinged on a
single newcomer joining within the first year. Most abandonments
(59 %) struck during a project’s first two years and projects that did
bounce back produced roughly four times as many commits after
the event as those that did not [12]. A follow up survey found that
new maintainers step in mainly because they personally rely on the
software, while administrative hurdles such as obtaining push rights
are a bigger barrier than writing code. Taken together, these findings
show that the label active in our own dataset merely indicates recent
surface activity; it does not prove that security patches are applied
or that a healthy maintainer team is in place. Without automated
dependency updates and broader maintainer coverage, even high-
profile repositories quickly accumulate outdated and vulnerable
libraries — hence the surprisingly similar vulnerability rate for
active and inactive projects in Table 6.
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Table 5: Firms with the most and least vulnerable percentage of repositories with vulnerabilities, split by technology companies

and others.

Technology Companies
# Repositories

Non-Technology Companies
# Repositories

Company Vuln.% Vuln. Non-Vuln. || Company Vuln. % Vuln. Non-Vuln.
Top 10 Most Vulnerable Firm Repositories
Vodafone 57.9% 11 8 || Citigroup 75.0% 24 8
Zebra Technologies 53.8% 7 6 || ResMed 75.0% 9 3
Intuit 47.5% 66 73 || US Foods 70.0% 7 3
SAP 46.6% 138 158 || Toll Brothers 70.0% 7 3
Swisscom 46.5% 101 116 || Farfetch 68.8% 11 5
Synopsys 44.4% 12 15 || ZTO Express (Cayman) 61.1% 11 7
Spotify Technology 43.5% 121 157 || Societe Generale 61.0% 25 16
Salesforce.com 42.8% 173 231 || Goldman Sachs Group 56.5% 39 30
VMware 40.1% 63 94 || Kohl's 54.8% 17 14
Naver 37.5% 101 168 General Motors 54.7% 23 19
Top 10 Least Vulnerable Firm Repositories (reversed order)
Analog Devices 10.4% 31 266 || ThyssenKrupp Group 14.3% 5 30
Keysight Technologies 10.0% 6 54 || Walmart 13.9% 21 130
Broadcom 7.1% 7 91 || Novartis 12.6% 12 83
Marvell Technology 7.0% 4 53 || Air France-KLM 10.5% 2 17
Skyworks Solutions 5.4% 2 35 || AGCO 8.3% 4 44
Microchip Technology 3.8% 15 376 || The Boeing Company 7.7% 3 36
Legrand 3.0% 1 32 || Hlumina 5.4% 3 53
Info Edge India 0.0% 0 11 || Avnet 4.5% 6 126
Cadence Design 0.0% 0 89 || Bristol Myers Squibb 0.0% 0 33
Quanta Computer 0.0% 0 25 || Chevron 0.0% 0 22

3.4 Measuring systemic risk of library
vulnerabilities

We are particulary interested in whether certain vulnerabilities
in a software library could simultaneously affect the software uti-
lized by many firms. If so, this would indicate that software supply
chain insecurity presents a systemic cyber risk. To check, we stud-
ied the most prevalent vulnerabilities present across all analyzed
repositories and organizations. Table 7 presents the top ten GitHub
Security Advisories (GHSASs), detailing the affected packages, sever-
ity ratings, total appearance counts and the number of distinct
repositories and organizations impacted. On the one hand, the most
commonly occurring vulnerabilities only affect a relatively small
number of repositories. The most commonly occurring vulnerabil-
ity affecting the brace-expansion library affected 1225 repositories,
just 3% of the total across all firms.

On the other hand, many of these vulnerabilities do in fact affect
a large share of firms. The same brace-expansion vulnerability
affected at least one repository for 39% of firms. This does suggest
that many of the most popular vulnerabilities may pose a systemic
risk given the wide adoption across firms.

For example, GHSA-c2qf-rxjj-qqgw in the semver package is
classified as High severity and corresponds to a Regular Expression
Denial of Service (ReDoS) flaw where untrusted input passed to
the constructor can trigger catastrophic backtracking and block
the event loop. We observed this advisory 2 324 times across 805
unique repositories owned by 89 different organizations. Again, the
share of repositories affected is small (2%), but many organizations
are affected (32.4%).

While not in the top 10, we also examined the presence of one of
the most critical and widespread vulnerabilities ever discovered the

Table 7: Vulnerabilities appearing in the most repositories.

Vulnerability ID Library Severity  repos orgs
GHSA-v6h2-p8h4-qcjw  brace-expansion  Low 1225 108
GHSA-c2qf-rxjj-qqgw semver High 805 89
GHSA-968p-4wvh-cqc8 ~ @babel/helpers ~ Moderate 681 84
GHSA-3xgq-45jj-v275 Cross-spawn High 717 86
GHSA-9wv6-86v2-598]  path-to-regexp High 665 83
GHSA-grv7-fgsc-xmjg ~ braces High 689 85
GHSA-952p-6rrq-rejv micromatch Moderate 686 86
GHSA-hrpp-h998-j3pp  gs High 574 77
GHSA-3h5v-q93c-6h6q  ws High 527 75
GHSA-35jh-r3h4-6jhm  lodash High 517 76

Log4j remote code execution (RCE) flaw within corporate reposi-
tories. Our analysis revealed that 151 unique repositories and 43
unique organizations remain affected by this vulnerability.

Table 8 lists the libraries with the highest number of GitHub
Security Advisories (GHSAs) detected and shows how the vulnera-
ble versions are distributed across repositories and organizations.
This is an alternative way of measuring high-impact vulnerabilities,
this time by the frequency of occurrence of vulnerabilities in the
packages themselves. Note that the three vulnerabilities attracting
the most distinct vulnerabilities are variations of the popular ten-
sorflow libraries. Once again, these vulnerabilities affect a small
number of repositories but affect a higher share of organizations at
least once.

4 Related Work

Several recent studies connect directly to our effort to measure the
security of enterprise software supply chains. Lazarine et al. [19]
built a fork graph of large tech GitHub projects and ran static-
analysis tools on every fork. They showed that many forks keep
exploitable code long after the upstream patch, highlighting how
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Table 8: Top 10 Most Vulnerable Packages and Their Adop-
tion.

Package Vulnerabilities Repositories Organizations
tensorflow 423 183 41
tensorflow-gpu 418 25 9
tensorflow-cpu 399 5 3
ImageMagick 268 1 1
jenkins-core 201 3 3
FFmpeg 195 2 2
go 125 4 3
django 118 65 32
stdlib 117 80 35
FreeType 83 1 1

risk spreads through the fork network, an effect we also observe at
company scale. Williams et al. [29] surveyed supply chain attack
paths across code dependencies, build systems, and human fac-
tors. They outlined research needs such as better metrics, stronger
standards (SSDF, SLSA), and new challenges introduced by large
language models (LLMs) in the supply chain.

One important limitation of our study is its reliance on imper-
fect tools for generating SBOMs and linking them to vulnerabilities.
O’Donoghue et al. [24] sheds light on the resulting measurement
error. They compared SBOMs generated by Syft and Trivy (Cy-
cloneDX vs. SPDX) and scanned them with Grype, Trivy, and CVE
bin tool. Simply changing the SBOM tool or format produced large
swings in the vulnerability count, underscoring the measurement
challenges we face when scanning thousands of enterprise reposi-
tories. It is worth noting that Syft and Grype performed best among
tools evaluated. In a similar effort, Yu et al. performed a largescale
differential analysis of four popular metadata based SBOM tools
(Trivy, Syft, Microsoft SBOM Tool, and GitHub Dependency Graph)
and found that none produces fully accurate manifests: all exhibit
inconsistent dependency extraction, omissions, and even parser
confusion vulnerabilities that can hide malicious or vulnerable
packages [30].

Nocera et al. [22] mined GitHub for projects that already publish
SBOMs, finding only 186, fewer than half ship the SBOM in official
releases. This low adoption motivates our choice to generate SBOMs
automatically so that vulnerability analysis covers all repositories,
not just the rare ones with a pre-existing SBOM. However, simply
making security information available does not guarantee that
it will be critically assessed or properly used. Less experienced
developers often feel safe when relying on projects released by large
companies such as Google. A very interesting example (although
not entirely related to our study) comes from a survey of 214 Google
account holders: Balasch et al. observed that 67% of participants
had at least one third party application with broad API access, and
79% rarely or never reviewed these permissions, illustrating a trust
transference effect toward anything associated with Google [13].

One of the biggest limitations of SBOM-based vulnerability de-
tection is the assumption that all included libraries are equally risky.
Recent work on code coverage and reachability analysis shows that
this may significantly overestimate actual risk. The work from [31]
demonstrates that many flagged vulnerabilities exist in code that
is never executed in practice. This "reachability gap" means our
11.7% vulnerability rate may overstate actual exploitable risk, as
the vulnerabilities might never be called.
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A comparable security gap appears on GitHub. Fischer et al. an-
alyzed more than 50 000 repositories and found that dependency
alert banners increased manual patching by about 149%, while en-
abling automated security updates added a further 32%. By contrast,
the newer CodeQL code scanning feature reduced critical vulnera-
bilities by only 2% [17].

These findings show that neither a project’s brand nor platform
level warnings are enough to guarantee safety. Continuous depen-
dency maintenance and independent verification remain essential
for keeping real world projects secure.

4.1 Regulations

Currently, only certain categories of companies are subject to SBOM
related laws, such as those operating in government contracting,
healthcare, critical infrastructure, financial services, and IoT device
manufacturing, but SBOMs are becoming increasingly important
over time, and soon we will see all software companies producing
SBOM:s. In this section, we list all current and upcoming regulations.

EU Cyber Resilience Act (CRA). This EU rule, published in Novem-
ber 2024 and coming into effect on 11 December 2027, states that
anyone who makes products with digital parts (hardware or soft-
ware) must create and keep a machine readable SBOM in their
technical documents [3].

United States Executive Order 14028. In May 2021, Executive Order
14028 states that every U.S. federal agencies must require SBOMs
from suppliers of critical software. A proposed change to the Fed-
eral Acquisition Regulation would extend this requirement to all
government ICT contractors [1][4].

PCI DSS v4.0. From 31 March 2025, PCI DSS v4.0 requires any orga-
nization that manages payment card data to produce an accurate
list of their software components. [2].

US FDA Cybersecurity for Medical Devices. Since 1 October 2025,
Section 524B of the FD&C Act and the FDA final guidance demand
a machine-readable SBOM for every connected medical device
submission [14].

These rules show that, although not every company has to pro-
duce an SBOM right now, more industries such as IoT devices and
finance will likely face similar or stricter requirements soon.

5 Conclusion

Even though many open source repositories are active and used by
thousands of developers every day, they continue to ship outdated
dependencies that contain high risk CVEs, exposing both end users
and at times, the organizations behind the software.

We have introduced a way to measure firm-level cybersecurity
through its public software repositories. We believe the approach
shows promise and merits further study, especially given the em-
phasis policymakers in many jurisdictions have placed on utilizing
SBOMs to measure and improve software security.

We have only begun to scratch the surface on the types of analy-
sis that can be conducted. In future, we aim to conduct econometric
analysis to search for causal relationships between firm software
security practices and observable outcomes. One major limitation
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of our study is the correctness and completeness of SBOM genera-
tion itself. Because we rely on Syft and Grype for SBOM creation
and vulnerability flagging, this tool level variability means we may
undercount real risks (missed dependencies) and overcount false
ones, introducing measurement bias into our enterprise scale sup-
ply chain assessment [24, 30]. Another challenge that we defer
to future work is to investigate the root causes for why so many
repositories load vulnerable libraries, even after patched versions
are available.

What are the implications for organizations? First, they should
recognize that public source-code repositories reflect on the com-
pany’s image. They should pay closer attention to the quality of
the code on these repositories, since they are associated with their
organization and are open source for anyone to inspect. Second,
organizations should beware the technical debt incurred by launch-
ing open-source projects. Maintaining and updating third-party
libraries is a crucial task, but one that is frequently overlooked
based upon the data presented here. Organizations should proac-
tively determine whether to sunset projects that are not actively
used. It would be unfortunate if firms responded to our findings by
making their repositories private. Rather, we hope firms begin to
recognize that pushing code to public repositories creates additional
responsibilities over the project’s lifecycle.

SBOM tools can help identify the presence of outdated libraries
and offer guidance on what needs to be patched. The methodology
we followed to identify potential vulnerabilities is completely open
source and easily replicable. One possible avenue for future research
could be to notify companies of vulnerable code. However, the
research on the effectiveness of notification strategies suggest that
success would be limited [15, 20, 27, 28]. Ultimately, this is not an
efficient or scalable approach. Instead, we hope to elevate awareness
so that firm behavior can change by incorporating the open-source
tooling into their own vulnerability-management processes.
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