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Abstract

Cybersecurity research datasets are incredibly valuable, yet efforts to broaden their
availability have had limited success. This paper investigates why and advances under-
standing of paths forward using empirical data from a successful sharing platform. We
start by articulating the benefits of collecting and sharing research datasets, followed
by discussing key barriers that inhibit such efforts. Using extensive data on IMPACT,
a long-running cybersecurity research data sharing platform, we identify factors that
affect the popularity of datasets. We examine over 2,000 written explanations of in-
tended use to identify patterns in how the datasets are used. Finally, we derive a
quantitative estimate of the financial value of sharing on the platform based on the
costs of collection avoided by requesters.

1 Introduction and background

Data is an essential input to cybersecurity research. It takes many forms, from reports
of compromised websites to network topologies, and from geolocations of backbone routers
to traces of anonymous marketplaces peddling illegal goods. Whereas historically, the de-
velopment of security-enabling technologies such as cryptography could be designed from
mathematical foundations alone, today’s security controls usually require data as input to
the technology’s design and to evaluate its effectiveness. Ultimately, to improve cybersecurity
in the marketplace with scientific backing [2], empirical data must be more democratized.

Researchers have made considerable progress in advancing our scientific understanding
of cybersecurity. For example, we know a great deal more about the supply chains under-
pinning cybercrime [18, 6, 17]. New forms of attacks have been uncovered by researchers,
such as malware command-and-control domain infrastructure identified by inspecting pas-
sive DNS traces [3] and DDoS amplification attacks [36] . Retrospective analysis of antivirus
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telemetry data has identified zero-day vulnerabilities and pinpointed the time of exploita-
tion [4]. We also know more about the effectiveness of countermeasures, from the time
required to remove phishing websites [26] to time lags in updating compromised certificates
from high-profile vulnerabilities [11] to how well notifications sent to webmasters hosting
compromised sites work [19]. Researchers have even begun to explore the link between se-
curity levels and susceptibility to compromise. For example, researchers have found that
network misconfigurations may be predictive of security breach [22].

An analysis of top security publications from 2012 to 2016 has found that around half of
inspected papers either used existing datasets as input to their research or created data as a
byproduct [45]. However, we note that in most cases, data is collected in an ad hoc, one-off
fashion, requiring special arrangements with source companies. The resulting datasets are
not further shared. This makes reproduction or replication of results somewhere between dif-
ficult and impossible, hindering scientific advances. The practice is inefficient, as efforts are
duplicated. Assessments of long-term trends and progress are infeasible because researchers
are unable to conduct longitudinal studies. Finally, a dearth of data publication and sharing
means that research is either chilled or researchers chase insignificant cybersecurity prob-
lems [33]. The aforementioned study of research papers also found that 76% of existing
datasets used in papers were public, but only 15% of created datasets were made available.
This signals significant structural asymmetries in cybersecurity research data supply and
demand. It also underscores the opportunity to assist an underserved market.

This paper sets out to investigate the economics of provisioning cybersecurity research
datasets. We enumerate the benefits to wider availability, outline the barriers to achieving
that (since the community has been trying for many years with limited success), and identify
incentives to change this trajectory. We then empirically examine an exemplar of research
data sharing, the IMPACT Program. Using regressions, we identify factors that affect the
demand for research datasets. We also investigate how to value the sharing of research data:
first, by examining the data request purposes; and second, by quantifying value as costs
avoided by the requesters.

Note that there has been considerable attention paid to information sharing among op-
erators through organizations such as ISACs [14, 13, 24, 16]. In contrast, we examine data
provisioning done primarily for research purposes. Cybersecurity data resides on a use spec-
trum – some research data is relevant for operations and vice versa. Yet, as difficult as it
can be to make the case for data sharing among operators, its even harder for researchers.
Data sharing for research is generally not deemed as important as for operations. Outcomes
are not immediately quantifiable.Bridging the gap between operators and researchers, rather
than between operators alone, is further wrought with coordination and value challenges.
Finally, research data is often a public good, which means it will likely be undervalued by the
parties involved. Overcoming this problem requires benefactors whose remit or motivation is
to support and protect the collective good (e.g., governments). But benefactors vary in their
support for applied research and advanced development and its enabling data infrastructure.
All too often, then, support for research data provisioning resides in a purgatory between
essential operations and fundamental research.
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2 The economics of supporting cybersecurity research

datasets

2.1 Beneficial outcomes of data for cybersecurity research

Cybersecurity research data yields many benefits, but they are not monolithic. Instead, they
accrue along several, sometimes overlapping, dimensions. Value can vary by stakeholder, be
it academic researchers, government or commercial organizations, or society as a whole.
Data can provide direct benefits to individual stakeholders. But it can also accrue value to
society through its ongoing availability to a broader set of stakeholders [25, 41]. Lastly, there
can be derivative beneficial outcomes when the direct outputs from using data are used as
input to higher-order challenges, such enterprise cyber risk management or cyber insurance
underwriting.

The overarching benefits from expanded access to research data can be summarized as
advancing scientific understanding, enabling cybersecurity infrastructure, enhancing parity,
and improving operational cybersecurity. We describe each benefit category in turn.

Advancing Scientific Understanding Trust is a benefit that does not easily lend itself
to concrete formulae or universal specifications, but scientific methodology has long been one
of society’s principal proxies for trust since it is predicated on transparency and falsifiable
observation, measurement and testing to reach accepted knowledge. Cybersecurity has long
lacked reliable metrics and measurements, from quantifying risks to evaluating the effective-
ness of countermeasures. Science is the quintessential process by which society can achieve
progress, as well as assure objectivity and foster trust. Data is the raw material upon which
science subsists. Without data, there can be no systematic advancement of cybersecurity as
a computational, engineering, and social science discipline. Without scientific underpinning,
we are left with a cybersecurity market built on opinion, conjecture, hyperbole and faith.

In addition, data science1 and analytics2 are increasingly generating automated and aug-
mented decisions and actions related to cyber risk management, and are critical to cyberse-
curity capabilities in a dynamic threat and interconnected world. Cyber risk management
demands a more integrated, holistic understanding of the cyber-physical environment. It
involves multidimensional data, complex association and fusion of data, and high context
presentation. Cybersecurity decisions require abstraction of the low-level knowledge and
labor-intensive tasks needed to augment, aggregate, and enrich data. Such tasks are costly
to undertake and essential to advancing scientific understanding. Trust in the fairness and
reliability of data science and analytics starts with provenance and integrity of the data upon
which they are built.

1Viz: umbrella set of different techniques to obtain answers that incorporates computer science, predictive
analytics, statistics, and machine learning to parse through massive data sets in an effort to establish solutions
to problems that haven’t been thought of yet.

2Viz: subset of data science that focuses on realizing actionable insights that can be applied immediately
based on existing queries.
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Cybersecurity-enabling Infrastructure Scalable and sustainable availability of data
are critical to R&D capabilities. Researchers can get access to certain data at times, but
such access is often ad hoc, expensive, and/or dependent on opportunistic relationships with
individuals at data-rich companies. Although not always recognized as such, data is itself
research- and operations-enabling infrastructure. While the “Big Data” era may in fact
spawn a proverbial growth of data on trees relative to the past, extracting value from data
in a scalable and sustainable manner demands an infrastructure to pick, sort, truck, process,
store, bottle and ship data. Data as enabling infrastructure for research reduces duplica-
tion of costs and effort to find, curate, and use that data. Data as infrastructure lowers
the barrier to entry to engage innovative research and makes investments in cybersecurity
more efficient. A research-enabling data infrastructure reduces the time and cost associated
with stewarding data in a manner that is mindful of the associated operational, legal and
ethical risks. A sustainable and scalable data infrastructure counteracts the narrow mindset
that has defined cybersecurity data sharing heretofore. Information sharing tends to focus
on immediate concerns such as cyberattacks and imminent threats; sharing for research ad-
dresses longer-term trends, illuminates evolving attacker strategies, and provides a foothold
for improvements in defensive technologies. Finally, sharing for research also affects broader
facets of cybersecurity – education and training, workforce, controls acquisition, laws, long-
term challenges like building security into the design of hardware and software, changing
incentives, and developing wider scoping needs and requirements.

Parity Improving availability of data creates several benefits. When data sharing is per-
vasive, data sources provision and exchange data that might otherwise be left on the cutting
room floor. Parity lowers barriers for academic and industrial researchers, cybersecurity tech-
nology developers, and decision makers to access ground truth to inform their own work. An
ecosystem that relies on data to develop, test and evaluate theories, techniques, products
and services works better when there is not a stark gap between the data rich and data poor.
Large technology platforms own access to stockpiles of user behavior and infrastructure data
which is critical to cybersecurity. They can leverage this information advantage to study
evolving attacker strategies and develop more effective countermeasures than smaller rivals.
Meanwhile, academic researchers can be severely disadvantaged if not completely shut off
from obtaining ground truths about threats, vulnerabilities and assets. The interconnected
and interdependent nature of cybersecurity means that cooperation through data sharing is
necessary for defenses to be effective.

Data parity diminishes information rent-seeking, thwarts anti-competitive behavior, un-
encumbers innovation by reducing costs to cybersecurity startups and individual experts,
and increases the quality and effectiveness of products and services that are engendered by
competition. Higher quality data for research can help correct the negative externalities that
arise from organizations’ reluctance to share data. Data parity also impacts the efficiency
dividends that traditionally define value for organizations: having access to data which is a
core substrate to cybersecurity products and services can reduce costs, increase profitability,
and possibly introduce new sources of revenue.
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Cybersecurity Operational Support What is the difference between the benefits that
accrue from data for cybersecurity research and those for operations, and are they mutually
exclusive? There has long been a tacit bias, borne out in legislative efforts to encourage
data sharing [12], that relegates ‘research data’ less important than ‘operational data’ when
it comes to prioritizing investments in and support for cybersecurity data sharing. The
juxtaposition, however, tees up a false choice. Prioritizing data sharing for operations over
research can be likened to expending health care budgets on clinical and emergency room
medicine while forgoing preventative medicine. Like the former, data sharing for operations
is used for acute, tactical and incident-driven cybersecurity needs. Often it takes the form
of indicators of compromise (IOCs) such as IP addresses, URLs, file hashes, domain names,
and TTPs. Data for research has typically comprised more longitudinal and broader scale
data, such as blackhole address space, BGP routing, honeypot data, IP geolocation map-
ping, Internet infrastructure data, Internet topology, and traffic flows [30]. The presumptive
differences between research and ops data, however, blurs against a canvas of APTs, perime-
terless organizations, and advanced analytics. In each case, data needs to be representative
of contemporary dynamic threats, traffic and communication patterns, and correlated risks
to inform new, effective ways to protect critical information systems and assets. IOC-centric
data addresses only part of the picture.

Data for cybersecurity research is increasingly needed to meet the growing needs of own-
ers, operators and protectors of cyber infrastructures for dynamic and responsible operational
support. These needs include situational awareness, decision support and optimization, risk
modeling and simulation, economic analysis, statistical analysis and scoring, and incident
response [38]. These capability needs can be met with research infrastructure that is re-
sponsive to the data and analytic requirements that support cyber security operations in a
reusable and repeatable manner.

There are many beneficial outcomes for cybersecurity operations that stem from broader
availability of research data [39]. Examples of operational benefits include:

• Traffic analysis, network forensic investigation, and real-time network event identifica-
tion and monitoring (e.g., Internet outage detection, network hijacks) via on-demand
query and measurement of streaming data;

• Event reconstruction and threat assessment by correlating data across multiple different
sources and timeframes to offer insights and responses to suspected events;

• Tactical and strategic resource allocation for cyber resilience by assessing security and
stability properties such as hygiene, robustness, and economic sustainability;

• Cyber risk management at various level by understanding cyber dependencies, risk
aggregation, and cascading harm using integrated data (perimeter data like packet
capture and firewall logs, internal data like DNS and DHCP logs, and cyber environ-
ment data);

• Threat detection by conducting time series analyses over coalesced signals/observed
patterns;

• Investments in cybersecurity controls based on benchmark and efficacy measurements.
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2.2 Incentives and disincentives to support datasets for research

Appreciating the positive outcomes from sharing data is critical to its broader availability.
But achieving that desired end state requires understanding why data sharing for cyber-
security continues to conjure up “Groundhog Day” sentiments despite several decades of
dialog extolling its virtues. We therefore turn to the barriers that hinder broader provision-
ing of data, followed by a discussion of available incentives that can enable more noticeable
progress.

2.2.1 Barriers

We characterize barriers as legal and ethical, operational, and value impediments to the
availability of data for cybersecurity research.

Legal and Ethical Risk Legal barriers to sharing data invariably top the list of obstruc-
tions and are both colloquially and formally recognized as such (see e.g., [21, 40, 5]). In
general they comprise privacy and proprietary rights and interests, private contracts, intel-
lectual property rights, data protection laws, and antitrust liability. Federal and state reg-
ulations and laws around personal data and communications privacy, consumer protection,
and data protection create legal obligations on organizations who collect, use and disclose
information that may otherwise be useful for cybersecurity research. Note that these sources
of liability are not aimed to prohibit data sharing, per se, but by not carving out exceptions
for allowable research they can functionally serve to disincent otherwise lawful data sharing.

Legal liability may also spawn from contracts between and among individuals and or-
ganizations which prescribe or proscribe behavior relating to shared data, in which cases
clauses related to warranties, terms of service, limitation of liability, and indemnification for
harms/damage/loss, and license terms can impede data sharing. While antitrust barriers
have been undermined by official policy statements not to mention a paucity of precedent,
there nevertheless are some unresolved legal questions about the nexus between sharing cy-
bersecurity information and anti-competition law [34]. Antitrust risk has heretofore arisen
in the context of business-to-business sharing of data for tactical cybersecurity operations,
not for research purposes. In fact, if companies were to share data for research purposes,
this could mitigate against antitrust concerns since presumably the scientific knowledge that
is produced would inure to the benefit of consumer welfare and against information asym-
metries that characterize and favor anticompetitive behavior.

Privacy and confidentiality sensitivities are a frequently cited disincentive to sharing
data. At least for privacy this is owing to a confluence of legitimate privacy risk, evolving
applications of privacy law to new technologies, legal conservatism, and/or the opportunistic
use of uncertain legal liability as a foil for other motivations not to share. Progress has
been made in disentangling privacy-sensitive data from what is needed for cybersecurity,
i.e., sharing machine-to-machine data that does not contain first-order personal identifying
information. Nonetheless, sensitive data risk resurfaces in the wake of advanced analytic
capabilities such as machine learning and other AI-techniques that enable re-identification
of pseudonymized data, or that spawn new risks of harm that stem from poorly understood
privacy and confidentiality sensitivities created by these analytics [12].
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The ability to realize value from shared data can be impeded by techniques or policies
that attempt to prevent or mitigate data sensitivity risks. Technically obfuscating sensitive
data or invoking data use limitations or NDAs can negatively impact utility of the shared
data. For example, anonymizing IP addresses in network traces can hinder the ability to
reassemble attack traffic data needed to test and improve new IDS technology. Prohibiting
the probing of those IP addresses in a data use agreement may preclude research efforts to
detect Internet outages.

Organizational sensitivities surrounding data sharing anchor on the potential exposure
of confidential data, such as network configurations, system architectures, security controls,
passwords and identifiers, trade secrets, customer or partner relationships, other proprietary
financial and business information, and intellectual property (patent, copyright, trade secret).
Improper release of this data may raise concerns about shareholder liability, loss of revenue,
exposure of vulnerabilities and victimization, or otherwise induce competitive advantages for
fellow market contenders. A related, albeit less quantifiable, risk of sharing cybersecurity-
relevant data is reputation harm. The archetypal example is borne out in organizations’ data
breach reporting strategies, where legal mandates to report supersede notions of voluntarily
sharing in support of collective defense. Here, organizations regularly weigh the costs of
compliance with breach laws versus the impact of notification on revenue, sales and stock
prices.

In addition to the plethora of legal risks related to proscriptions on sharing certain data,
few laws actually encourage data sharing by neutralizing those liability concerns, and even
then the focus is not on data for cybersecurity research purposes (e.g., [42, 27]). Industry
does not usually share real, high fidelity data with researchers. There are exceptional cases
where sensitive data is made available by organizations to specific researchers. However,
these one-off, ad hoc situations do little to advance trusted, collective use of data. Besides
the limited availability, there is no opportunity to peer review, hold results to account, or
leverage the data to improve upon similarly situated efforts. These situations fail to establish
sharing precedent that would help lower the risk perceptions and realities of data sharing,
and mitigate some of the barriers [38, pp. 35–36].

Ethical risk may arise from the nature of the collection, use or disclosure of shared data.
Ethical risk can spur legal liability when ethical obligations have been codified into law, as in
the U.S. with the Common Rule and 45 C.F.R. 47, which requires any researcher receiving
federal funds to abide by protections it establishes for research involving human subjects. A
major challenge in cybersecurity research is whether it involves humans and triggers ethical
oversight, or as is often argued, non-human machine research that is exempt from oversight.
ICT research ethics challenges and guidelines are well-documented in the seminal Menlo
Report [9]. Even if cybersecurity research is technically exempt under a strict interpretation
of human subjects research, nevertheless ethical risk arises when research involves potentially
human-harming activity such as interactions with malware that controls compromised user
devices, embedded medical devices controlling biological functions, or process controllers for
critical infrastructure.

Direct Costs Engaging data for research can have nontrivial direct financial costs. With
the exception of data that is shared on a one-off, acute basis, technical infrastructure costs
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can impede research data collection and sharing. These can accrue to both data providers
and user-recipients.

At a fundamental level data is not cost-free, and all sharing barriers can be boiled down to
economic consequences. Even most data sharing efforts focused on tactical operations come
at a cost, be it the price for direct data acquisition, membership in ISAOs or ISACs (e.g.,
$10,000 to $100,000 according to [20]), threat feed subscriptions, personnel to administer the
data, and/or infrastructure to appropriately use the data. Certainly, advances in technology
have created unprecedented amounts of data raw materials which in theory should lessen the
need for data sharing. Yet there are undoubtedly resource requirements in dealing with real
world data sets: finding, collecting, generating, preparing, storing, understanding and using
the data. These include data storage and computation, semantically effective data searches,
curation and annotation of noisy data, and cross-validation of data with limited provenance.
Qualitative and quantitative data for effective cybersecurity demands infrastructure to make
it actionable. As with our terrestrial roads, bridges, and waterways, digital infrastructure
does not exist via assumed affordances, rather, deliberate resource expenditures. While this
may not be revelatory, the research that often demands larger-scale, longer-term empirical
data requires the equivalent in investment.

The problem is that cybersecurity research data is a club good, and often provisioned as a
public good. Data is inherently non-rival. By design, in order to promote parity and advance
scientific understanding, it is also often made non-excludable. Many research datasets are
given away for free. When this happens, research data becomes undervalued and under
provisioned, unless an entity is willing to underwrite the cost to society’s benefit. In the
absence of a benefactor, one could restrict access to those who are willing to pay for it. But
this is problematic, since most researchers work in academic or other non-profit settings.

Value Uncertainty, Asymmetry and Misalignment While the benefits of data sharing
to support tactical operations is often readily apparent, the benefits of sharing for research
can be latent, indirect and correlative. When faced with situations where the risks and cost
of sharing are direct, foreseeable, and causal (e.g., legal liability), behavioral economics tells
us that people will do what is less uncertain. Here that means erring on the side of not
sharing data when the countervailing benefits are not articulated or persuasive relative to
costs [35, pp. 9–10].

The difficulty in realizing benefits from sharing data may also dissuade efforts. Effec-
tuating value and avoiding harm from shared data is a contextual endeavor which involves
understanding the utility profile for the shared data. Consider the following dimensions of
data that can affect how to value sharing outcomes: duration (e.g., multi-year timescale at-
tack traffic are needed for trend analysis but irrelevant for near real time incident response);
timeliness (e.g., delayed sharing may be unhelpful, real time may not be actionable); de-
tail (e.g., different users have different needs from broad policies and events, to incidents
and IOCs, noting that even IOCs without context may have lower value); sensitivity (e.g.,
whether data is classified, confidential, proprietary, or personal will impact its availability);
purpose (e.g., stakeholders have varying needs from situational awareness, specific defensive
actions/measures, planning, and capacity building; noting that even threat signatures for
attacks on specific networks or assets will not necessarily transfer to others); processing ma-
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turity (e.g., whether the data needs additional curation and processing to be valuable, such
as raw data versus derivative dataset); and audience (e.g., public researchers will have differ-
ent needs and disclosure controls than industry consortia) [7]. In other words, articulating
value up front is rarely enough. The task’s complexity often inevitably introduces knowledge
and administrative friction that can be a barrier to sharing.

Just as stating value up front can be hard, so is articulating the harm caused by not
sharing in advance. Proving a negative – that the sharing will not cause undue harm – can
be impossible. Regrettably, it becomes that much easier to conclude that the cost of sharing
likely outweighs the benefits.

Even when research benefits are palpable, they often accrue asymmetrically between data
providers and seekers, thereby disincentivizing sharing. Some entities find that the benefits
of receiving outweigh the benefits of providing data. This “free riding” can be a barrier to
sharing and is not uncommon for social goods. 3

Value mismatches may arise between the type of data researchers produce and the needs
of recipients. As previously mentioned, most sharing occurs with tactical or breach-certain
information between and among private companies and the government. There is very little
sustainable sharing done with individual researchers or non-commercial research institutions
for research purposes. “[R]esearch in cybersecurity requires realistic experimental data which
emulates insider threat, external adversary activities, and defensive behavior, in terms of
both technological systems and human decision making.” [33]. The relevance and quality of
shared data can be a barrier. Simply put, there can be a mismatch between what a data
provider can and wants to generate and what a requester needs.

Even when the data is of interest, the collection, curation and/or provisioning process
and workflow might not align with the requester’s consumption capabilities. For example,
resilience or outage detection research may need to be accessed dynamically via API rather
than be downloaded in raw form from static repositories [39]. Similarly, network attack traffic
needs to be labeled when it is provisioned to make it useful for researchers applying artificial
intelligence techniques. High volume data may be difficult for the recipient to receive and
process, or data may need to be transformed or combined prior to analysis. Sometimes the
mismatch arises from a lack of agreeable legal and technical standards– both semantic (e.g.,
ontologies) and syntactic (e.g., schemas or APIs) [28, 31].

2.2.2 Incentives

Incentives to share data for research are those that lower the barrier to entry for cybersecu-
rity R&D and address the operational, legal, and administrative costs that otherwise impede
the scalable and sustainable data sharing needed to enable higher quality cybersecurity in-
novation in a responsible manner. We challenge assumptions that incentives to share both
research and operational data are sufficient, and that organizations will embrace data sharing
in light of general acknowledgement that it is critically lacking. The incentives to sharing
largely mirror the barriers discussed above. Fundamentally, there is a need to align incen-
tives between producers, seekers and beneficiaries of shared data for research. Sharing for

3See, for example, [43, 44]. Regarding the data breaches federal employees’ information revealed in June
2015 by the Office of Personnel Management, it is not clear that specific information about the threat or
even defensive measures would have resulted in effective defense against the attacks.
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operational cybersecurity suffers from misaligned incentives, so support for research is more
attenuated given its different value dividends with cybersecurity research spend, including
expending resources to support sharing. In the operational realm, for example, companies
that suffer a cybersecurity breach such as the theft of credit card information do not pay the
full cost of the breach. As well, software companies are primarily driven by time-to-market
pressures which come at the expense of cybersecurity needs to immediately fix security and
other bugs.

On the data supply side, the most obvious yet arguably difficult incentive to effectuate
is direct economic investment in large-scale, long-term and freely available data. Described
more fully in the next section, the IMPACT Program provides a unique example of how
funding to support data infrastructure addresses global cybersecurity research data needs.
Regarding incentives on the demand side, the monetary investment in data sharing orga-
nizations (e.g., less than $100K [20]) can be much more cost effective than purchasing
MSSP services. It is worth noting that the cost of providing information, including joining
a specialized sharing organization, is likely to be less than $100,0004.

Currently law and regulation does not create data sharing incentives. Few laws or reg-
ulations directly encourage data sharing. Nevertheless, calls by industry for liability safe
harbors are manifest (e.g., those provided by the Cyber Information Sharing Act), thus sup-
porting the claims that offering protections would help assuage anxiety about legal risk with
data sharing. While often viewed as a stick rather than a carrot, regulations such as data
breach notification laws and the SEC’s requirement to disclose “material information” on
cyber risks serves as a forcing function to engender publish and share data.

Lacking hard enforcement to share data, levers to encourage data sharing anchor on
reciprocity, reputation, and retribution. There are few rewards for organizations who share
data, but positive public relations and attribution in publications that cite shared data
can cultivate reputations as good corporate citizens or achieving corporate responsibility.
The equivalent on the research side are the reputational benefits that come from increased
citations if shared data is referenced in derivative papers that use that data [45]. Data
providers are incentivized to continue doing so if they likewise receive some benefit such as
feedback on the utility of the data or perhaps getting access to data that would otherwise
be unavailable without recipient stakeholders’ recognition that reciprocity creates network
effects. The threat of retribution might also encourage multilateral sharing. Examples
include negative publicity or “peer shaming” when terms of shared data are violated or data
sharing is otherwise exploited.

Economic and collective security objectives can incentivize data sharing. Fostering a
longer-term secure infrastructure and economic growth is not antithetical to the notion that
maximizing shareholder value means employing any means to increase stock price. On the
contrary, if the value that flows from sharing data for cybersecurity (see Section 2.1) lowers
operational, financial, reputational, or public relations costs or increases revenues, there is a
strong argument that public organizations are fulfilling their obligations to shareholders by
spending on cybersecurity viz data sharing.

At the operational process and legal level, the IMPACT Program serves as a good ex-
ample of how some barriers can be overcome. This model enables data providers to leverage

4See, for example, Financial Services ISAC, Membership Benefits at https://www.fsisac.com/join.
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standardized data use agreements that allow for customized additional data restrictions by
the Provider. Common features of its data use agreements include:

• IP rights protections for providers; purpose limitations for use of data, and duration
limitations;

• balanced liability limitations;

• strong privacy and security requirements for data storage, including use of encryption;

• requirements for the destruction of data at the conclusion of the research;

• ownership and control of data resides with providers, who host and provision their own
data.

Furthermore, balancing utility and data sensitivity is achieved via technical and policy
controls. Providers can engage disclosure control-as-a-service for very sensitive data that
allows analysis without the recipients seeing the sensitive raw data (e.g., SGX enclaves, mul-
tiparty computation) . Furthermore, oversight and accountability measures such as vetting
the legitimacy of the sharing participants and data provenance helps establish trust that
is often needed to enable sharing. In short, models that have successfully operationalized
data sharing for research can incentivize replication and further investment. While IMPACT
does succeed in reducing these barriers, its approach has been to treat cybersecurity research
data as a public good in which the U.S. government subsidizes its creation by funding data
providers and offering the data to users for free.

3 Existing models for supporting research datasets

A number of models have been attempted to support cybersecurity research datasets, each
with their own advantages and drawbacks. We briefly review several of them here, in light
of the preceding discussion on the value, barriers and incentives associated with sharing.

Research student internships Perhaps the most tried-and-true method for sharing data
between industry and researchers is to temporarily hire research staff at the firm who has raw
data available for collection and analysis. Ph.D. students regularly spend months working
at companies so that they might work on a project of mutual interest to the company and
researcher. Becoming an employee sidesteps thorny issues such as seeking legal permission
to share and quantifying values and risks that are more often necessary when working with
outsiders. The downside of course is that the data itself is typically not shared and cannot
be used beyond the project for which it was originally collected.

Enclaves Some companies have made portions of their data available to vetted external re-
searchers on request. Perhaps the best-known example is the Symantec WINE program [10],
which made antivirus telemetry data available to run experiments. Unfortunately, these
programs have struggled to meet the demand from users and are often short-lived.
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Trade organizations Most industry organizations, such as ISACs, that collect and share
operational data only do so between industry members. A few, however, also make their data
available to researchers. For example, the Anti-Phishing Working Group has regularly shared
its phishing URL blacklists with researchers who request access. Similarly, the Shadowserver
Foundation and Spamhaus regularly share abuse data with vetted researchers.

Commercial DaaS providers Industry data providers such as Farsight sell threat in-
telligence feeds to private customers. They also share data with researchers, who often
elect to share operational data from their organizations back to the commercial operators in
appreciation.

Information sharing and analysis centers Significant data sharing takes place at
sector-specific information sharing and analysis centers and organizations (ISACs and ISAOs).
However, to date, these organizations have focused on data sharing between operators within
the same sector, as opposed to sharing with outside researchers.

Open data The Open Data model primarily concerns access to certain government data
and is premised on transparent and free availability of some data for use and republication
by anyone without intellectual property or other control restrictions. This model faces tech-
nical barriers such as data processing difficulties, API deficiencies, lack of machine readable
formats, sophistication needed to link and fuse data, and a lack of integrated tool sets to
combine data from different data providers [46]. Other infrastructure challenges include
access administration, storage, integration, and data analysis [15].

Researcher self-publishing Some self-motivated researchers elect to publish datasets on
their own, either by self-hosting on websites or by partnering with organizations such as the
Harvard Dataverse. Such activity is comparatively rare because only public data can be
shared and because norms to share data have not taken root in the academic cybersecurity
research community. Even when it does occur, such publishing is often short-lived and
typically does not support ongoing data publication.

Government-facilitated sharing Governments can support data sharing beyond the
unilateral Open Data publication model. In addition to fostering cybersecurity data sharing
by directly funding the IMPACT R&D-enabling infrastructure described above, DHS cham-
pions multilateral operational sharing between and among civil society and governments [8].
Two notable models are the Cyber Information Sharing and Collaboration Program (CISCP)
and the Automated Indicator Sharing (AIS) program. CISCP involves private sector partic-
ipant organizations voluntarily submitting cybersecurity data that is subsequently analyzed
and context-enhanced to provide recipients with more appropriate threat assessment and
response. In contrast to CISCP’s low-volume, deliberate curation approach, AIS tries to
commoditize cyber threat indicator sharing using more automated processes to facilitate
quantitatively broader sharing. AIS participants include Federal departments and agencies,
state, local, tribal, and territorial governments, private sector entities, information sharing
and analysis centers and organizations, foreign governments and companies.
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Critical analysis of these models is beyond the scope of this paper because they are not
research-focused. It is instructive, however, to consider how publicized shortcomings of these
approaches might be attenuated by a complementary cybersecurity research data sharing
regime. Sharing threat intelligence with the private sector at the DHS is hamstrung by
prioritizing automated ingestion and speed of release over qualitative context-enhancement,
and because there’s a failure to integrate relevant databases [32]. Furthermore, only six non-
federal entities share data with DHS via AIS, for example [23]. The result is an incomplete
picture of risk exposure and insufficient details to be actionable.

Collaborative platforms for sharing research data Over the past 10–15 years, a few
attempts have been made to collect and disseminate cybersecurity research data by estab-
lishing a dedicated platform to do so. The first attempt was PREDICT (the predecessor to
IMPACT), an effort launched in 2006 [37]. PREDICT sought to reduce legal and technical
barriers to sharing data by establishing unified agreements and serving as a clearinghouse
of disparate datasets. Additional efforts have been funded as research projects by govern-
ments to collect relevant cybersecurity datasets and make the collected data more broadly
available (e.g., the WOMBAT project [1], the Cambridge Cybercrime Centre [29]). Because
these programs are in effect providing public goods free of charge, their continued operation
requires support from a benefactor, typically a government research program.

4 Valuing cybersecurity research datasets: The case of

IMPACT

We now investigate more closely IMPACT, a notable platform that disseminates cybersecu-
rity research datasets and which has been supported for over a decade by the Department
of Homeland Security, Science & Technology Directorate. Cybersecurity data provisioning
can be thought of as a two-sided market that must satisfy incentives for both the producers
of relevant datasets and consumers of such datasets. The IMPACT Program has funded cy-
bersecurity researchers to undertake the significant steps of collecting or creating, cleaning,
and finally making cybersecurity-related data available for free to qualified researchers. The
programs federated technical distribution model achieves scalable and sustainable sharing
via normalized legal agreements and centralized administrative processes, including vetting
prospective researchers, datasets and providers.

The operators of the IMPACT program have shared with us information on dataset
requests, namely:

1. all requests for data made to the platform, from its inception in 2006 through Septem-
ber 30, 2018;

2. time when datasets are made available;

3. purpose requests in which the requester outlines its intended use in free-form text;

4. attributes of the dataset (e.g., provider, restrictions on use, time period of collection).
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Table 1: Linear regression tables for all requests (left) and approved requests (right)

Dependent variable:

(Requests)

(1) (2) (3)

Constant 5.814∗∗ 6.339∗∗ 7.613∗

Request Time 1.922 2.354∗ 3.528∗∗∗

Age −0.729∗∗∗ −0.604∗∗ −0.859∗∗∗

Comm. Allowed −3.357 −6.821∗∗

Restricted −0.379 −2.546
Quasi-Restricted 2.771 3.510∗

Ongoing 6.607∗∗∗

Configurations −12.953∗

Attacks 6.742∗∗

Adverse Events −7.589∗

Applications −5.031
Benchmark −5.993
Network Traces 2.442
Topology −5.610∗

Observations 196 196 196
R2 0.044 0.062 0.289
Adjusted R2 0.034 0.037 0.238
Residual Std. Error 10.224 (df = 193) 10.209 (df = 190) 9.082 (df = 182)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Dependent variable:

(Approved)

(1) (2) (3)

Constant 4.640∗∗ 5.584∗∗ 5.915∗

Request Time 1.524 1.929∗ 3.002∗∗∗

Age −0.653∗∗∗ −0.535∗∗ −0.748∗∗∗

Comm. Allowed −2.385 −4.885∗∗

Restricted −3.204∗∗ −5.269∗∗∗

Quasi-Restricted 1.832 2.369
Ongoing 5.054∗∗∗

Configurations −9.424
Attacks 6.203∗∗

Adverse Events −6.538∗

Applications −2.698
Benchmark −4.253
Network Traces 2.615
Topology −4.536∗

Observations 196 196 196
R2 0.053 0.107 0.342
Adjusted R2 0.043 0.083 0.295
Residual Std. Error 8.505 (df = 193) 8.325 (df = 190) 7.302 (df = 182)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In total, 14 providers have made available 209 distinct datasets. 2,276 distinct requests
for these datasets have been made.5

Additionally, the IMPACT team shared the results of email inquiries sent to all requesters
in the summer of 2018 asking about whether and how the data was used. Furthermore,
several data providers shared information on their costs. More details on these datasets are
provided in the following subsections.

4.1 Regression analysis of dataset requests

The first way in which we evaluate the value of cybersecurity datasets provided by IMPACT
is to examine the factors that affect how frequently they are used. Many variables could
influence a dataset’s popularity among researchers, from the restrictions placed on its com-
mercial use to the type of data being shared. We empirically examine multiple factors using
regressions described below.

Regression Analysis We constructed a series of linear regressions with two distinct re-
sponse variables: (1) the total number of requests a dataset receives and (2) the total number
of approved requests. For these models, we only considered requests from 2016 onward be-
cause IMPACT utilization was relatively stable during this period.

Explanatory variables include:

1. Time Available for Requests: This variable indicates how long, in years, dataset
is made available to researchers since January 1, 2016. We anticipate that the longer
a dataset is available, the more requests it receives.

5IMPACT lets providers choose whether to treat datasets that are collected over time as a single, ongoing
dataset or as distinct datasets collected at different points in time. We consolidated datasets with the same
basic structure collected at different points in time into a single dataset. This also affects how we count
requests. We counted multiple requests for the same type of data collected at different intervals as a single
request.
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2. Dataset Age: This variable indicates how old, in years, the dataset is. Age is deter-
mined by the time that has passed since the start of data collection. We expect that
the older a dataset is, the less likely it is to be requested.

3. Commercial Allowed: IMPACT allows data providers to choose whether to permit
commercial use or to restrict use to academic or government purposes. We hypothesize
that this variable may affect the number of requests either by allowing more people to
request it or only allowing commercial organizations to access less crucial datasets.

4. Restriction Type: We hypothesize that as access to datasets are made less restric-
tive, they will be requested more often. The three restriction types in IMPACT are
Unrestricted, Quasi-Restricted and Restricted. These categories designate the poten-
tial sensitivity of the data, the ease with which the request can be processed, and the
policy controls in the associated legal agreement. For example, Unrestricted data is
low risk and can be requested by a click-through agreement that has fewer user obliga-
tions. This is compared to Restricted data that has privacy or confidentiality risk and
requires a signed MOA, authorization by the provider, and more use encumbrances.
Unrestricted is used as the baseline in the regressions.

5. Ongoing Collection: Some datasets encompass a snapshot of time, while others are
being constantly collected and publicized in IMPACT. We expect that datasets with
ongoing collection will be requested more often.

6. Dataset Category: We expect that characteristics of a dataset will influence the
number of requests it gets. We do not presume to know which categories will be
requested more often, but we do anticipate that the type of data within a dataset will
affect request totals. We note that the data appearing in IMPACT reflects the interests
of the data providers, not necessarily what requesters actually want. This categorical
variable uses Alerts as a baseline.

The tables in Table 1 present the results of the linear regressions. Surprisingly, the
baseline model does not find the amount of time a dataset is available to researchers to
significantly affect the number of requests it receives, though the overall age of the dataset
is negatively correlated with requests. Adding in variables that cover access restrictions
(model 2) yields more surprises. On their own, these variables have limited effect. None of
the variables are significant for the regression measuring requests. Restricted datasets do
receive fewer approved requests than do unrestricted datasets, however, and that difference
is statistically significant. Furthermore, in Model 2, permitting commercial access does not
affect utilization. However, the variables become significant and negative once additional
explanatory variables are added in Model 3. In other words, permitting commercial use is
associated with a reduction in requests. Additionally, quasi-restricted datasets are requested
more often than unrestricted datasets, statistically significant at the 10% level. One possible
explanation is that the more attractive datasets place more restrictions on access.

Model 2 alone explains roughly 3.7% and 8.3% of the variance in total requests and
approved requests respectively. Adding in whether collection is ongoing and the dataset
category (model 3) helps explain a lot more of the variance: 24% and 30% respectively.
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Category Data Analysis Tech. Eval. Tech. Dev. Op. Def. Education

% of Requests 31.0 28.2 27.9 5.62 3.12

Table 2: Incidence of request categories in purpose requests.

Ongoing collection corresponds to six more dataset requests. Topology and adverse event
datasets are requested less often than alerts, while attacks are requested more often. In the
request regression, configurations are also weakly underrepresented.

4.2 Empirical analysis of value

We have just examined how the number of requests a dataset receives can vary by the terms
on which it is shared, as well as the type of data involved. We now investigate the value
created by utilizing datasets in IMPACT. Valuing information goods such as cybersecurity
datasets is fraught with difficulty. The most obvious approach is to assign a value corre-
sponding to the amount others are willing to pay to obtain it. This is not an option for
public goods like IMPACT datasets that are given away for free, not to mention that there
is no objective pricing of somewhat-similar data that is “sold” by data brokers or as part
of fee-based data sharing consortium. An alternative is to investigate how others use the
data, thereby creating value. This is a worthwhile approach because it can shed light on the
outputs or outcomes that result from data use. The challenges with this approach is that is
hard to aggregate the myriad uses into a single dollar estimate of value. We defer until the
next section a discussion of a method to provide a dollar estimate of IMPACT datasets.

Whenever a researcher requests a dataset offered by IMPACT, the person is required to
explain how he or she intends to use the dataset in a free-form text response. Data providers
review these requests in order to assess whether the request is legitimate6. We examined all
2,276 of these reasons and developed a taxonomy to encompass the various types of purposes
researchers have for requesting this data. There are six distinct categories and any individual
reason may be classified into one or more of these categories. No reason was ever classified
into more than three categories. These categories are described below.

Technology Evaluation Requests are categorized as Technology Evaluation when re-
quested for evaluating the effectiveness of some technology. This may be an algorithm,
framework, model, application, theory or any other form of technology that the requester
wishes to test. Datasets used for ML are not considered to be Technology Evaluation unless
they are exclusively used to evaluate a model. In other words, datasets used for ML training
and testing are only considered Technology Development.
Example request: “Need to evaluate if our new DDoS detection in-line analytical module in
NetFlow Optimizer can detect this attack.”

6The guidance given to requesters states the criteria: “The things we are looking for are some statement
about what is novel about what you need to do (”new spectral analyis”), some statement on how you’ll do
it (”spectral analysis to identify DDoS in aggregate traffic”), and some statement of the context of the work
(”for PhD-thesis research”)”
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Example request: “Evaluation of the risk methodology presented in the paper, as it applies
to current USG network communications.”

Technology Development: These are requests for assisting with the development of some
technology. The requester may wish to extract features from the dataset that aid them in
developing a technology (which we consider different from Data Analysis). Datasets that are
used to train machine learning applications are also considered technology development.
Example request: “We are designing an anomaly detection system (on the victim side) for
NIST. This dataset will be analyzed to capture the uniform attack behavior for our research.”
Example request: “Incorporate the attack scenarios to devise an automated process of de-
tecting and controlling malicious insiders to mitigate risks to the organization.”

Data Analysis The requester wishes to analyze the data for its own sake. Data analytics,
data visualization, and characteristic extraction all fall under data analysis. Again, datasets
that are used for feature extraction as a means of technology development are not labeled
as data analysis.
Example request: “The data will be used to analyze how DDoS affects the open source
production systems.”
Example request: “Government funded research to benefit humanitarian aid and disaster
relief community. Looking to see if we can correlate changes in BGP routing data with loss
of power/communications infrastructure.”

Operational Defense The data is requested in order to help protect some critical re-
source of the requester’s organization. Requesters may want to see if the data has any
specifics about their organization or if the data can help strengthen their defenses. Improv-
ing a defense resource to be used as a product is not considered operational defense.
Example request: “My objective is to protect Marine Corps data. This database can provide
intelligence on passive DNS malware that can be used to block it from entering my network.”
Example request: “We intend to use this information to make our institutions’ IT related
programs and computers as secure as possible. The ultimate goal is to ensure that our cus-
tomer data is safe from malware attacks by keeping informed of recent trends and software
that may require patches.”

Education Data is requested for education purposes such as use in courses or clubs in a
school setting such as a University or High School.
Example request: “I’d like to develop exercises for an introductory stats and data science
course that emphasizes cybersecurity awareness for the state of Virginia.”
Example request: “Mentoring project course for cadets at the Air Force Academy. Using
data to develop new heuristics for anomaly detection.”

Unspecified The request reason was either too vague or we were unable to determine/understand
what their request was for. They may have specified what their research is, but we couldn’t
discern/easily assume what part of their research the data is being used for.
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Attacks Topology Network Traces
% of Requests 58% 21% 21%

Request Cat. # % Sig. # % Sig. # % Sig.

Data Analysis 338 25 183 37 (+) 112 22
Tech. Eval. 334 25 92 18 (–) 148 30 (+)
Tech. Dev. 344 25 84 17 (–) 157 32 (+)
Op. Defense 98 7 (+) 24 5 4 1 (–)
Education 39 3 9 2 14 3
Unspecified 199 15 109 22 (+) 63 13

Table 3: Three largest dataset categories split by request categories. Statistically significant
under- and over-representations are indicated in bold with a (+/-).

Example request: “I’m doing some research on cyber situation awareness and feel this data
would be beneficial to this work.”
Example request: “Need for Research”.

We manually categorized each request according to the taxonomy described above. Ta-
ble 2 breaks down the incidence of requests that matched each category. Requests could
correspond to more than one category, or to no category at all. Data analysis was most
common (31%), followed by 28% each for technology evaluation and development.

We further investigated a question of whether or not the intended use for the data varied
by the type of data being requested. Using the dataset categorization from [45], we analyzed
the three most requested dataset categories split by request categories using a χ2 test. Ta-
ble 3 presents the results. Operational defense is overrepresented in the datasets describing
attacks: 7% of the requests for attack data state operational defense as the intended use,
compared to 5.6% overall. Data analysis is overrepresented in the requests for topology
datasets, with 37% of all requests for topology datasets listing it as the reason for use. By
contrast, technology evaluation and development are both underrepresented in the topology
requests. For network traces, the trend is the opposite: both are overrepresented, while
operational defense is rarely given as the reason for requesting network trace data.

We additionally sought to understand not only what the dataset was requested for, but
also what it was ultimately used for. DHS surveyed all IMPACT requesters whose requests
had been approved. Each survey response was associated with a certain dataset, or multiple,
that the respondent specified. In total, 114 requesters responded, a few of which were the
same requester responding for different datasets.

When asked whether or not they actually used the dataset they had requested, 60.4% of
respondents said they had. To better understand what those requesters actually used the
dataset for, we asked them to categorize their request reason and to categorize what their
actual use was using the request taxonomy described above. 90.8% of requesters reported
that they used the datasets in the same manner that they originally requested. This suggests
that the preceding analysis on intended use accurately reflects actual use.

Furthermore, we asked the requesters who used the dataset whether or not they would
have collected the themselves had IMPACT not provided the dataset. 72% answered that
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Category Cost

# Personnel 3
PI $38,500
Software Developer $87,000
System Administrator $80,000
Research Staff $30,825
Managerial Cost $37,000
Equipment $18,250

Total $291,575

Table 4: Median reported annual cost of providing datasets to IMPACT split by category
for eight data providers.
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Figure 1: Value of data shared by IMPACT since inception using avoided cost definition
(left). Value of data shared by top 4 providers on IMPACT using their costs reported for
the year in which data was requested (right).

they would not have collected the data themselves. For those that wouldn’t have collected
the data themselves, their research may not have continued. For the 28% that would have
collected the data themselves, they would have been replicating costly data collection and
wasting time or resources that could be spent elsewhere. Motivated by this finding, in the
next section we construct a quantitative model of value based on the avoided cost of data
collection.

4.3 Quantifying value through avoided cost

While it would be preferable to value cybersecurity datasets by quantifying the benefits that
accrue when individuals and organizations use the data, this is typically infeasible. Even
if it were possible to reach every user of a dataset, translating the many uses into a dollar
benefit is usually not possible even for the consumer of the dataset. One alternative method
for quantifying the value of datasets that can be aggregated is to think of value as the cost
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Figure 2: Cumulative distribution functions for the annual costs of providing data to IM-
PACT (left) and the number of annual requests providers receive for all shared datasets.

avoided by data consumers not having to collect the data themselves. Fortunately, such data
is readily available, as the IMPACT program pays data providers to share their data with
requesters.

Eight IMPACT performers shared detailed cost estimates for a number of categories such
as personnel and equipment. Annual figures from 2012–17 were provided. Table 4 reports
the median cost figures for each category, along with the total of $291K. Given that IMPACT
has shared data with 2,276 requesters, the total value created as measured by this metric
since the program’s inception in 2006 is $663 million.

We recognize that the metric’s validity rests on a number of assumptions that may not
hold in each circumstance. We assume each request is independent. We assume that the
researchers experience no other sunk costs or utilize any existing resources when provisioning
data. We assume that outside researchers would not have to expend resources gaining
a sufficient technical understanding of the data collection requirements. We also assume
that outside researchers would exercise the same level of care in collecting the data that
the IMPACT performers do. Even if these assumptions do not hold universally across all
requesters, the metric nonetheless provides a valuable estimate of what the “true” value
might be.

Figure 1 (left) plots the annual value created for all requests (solid red line), as well
as a more conservative measure that normalizes for intended use (green dashed line). A
normalization factor of 60% is used since that is the proportion of surveyed recipients who
reported using the dataset they requested. Figure 1 (right) splits the value created among
the top four IMPACT providers who have shared annual costs. We can see considerable
variation, which is a consequence of highly variable costs of data production and dataset
popularity.

Figure 2 (left) plots a cumulative distribution function for the annual provider costs. The
plot reveals a barbell-like distribution in which half of the providers have low costs around
$100K and half have higher costs around $600K. The vertical blue line shows the median
value of $291K presented in Table 4. Meanwhile, Figure 2 (right) plots a CDF of the number
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of annual requests providers have received since 2013. While the median number of annual
requests during this period is around 50, some providers receive much fewer requests while
other receive many more.

In fact, there is little to no relationship between the number of requests a dataset receives
and what it costs to produce. Figure 3 plots the annual provider cost against the number of
requests received that year for the top 4 providers. The best-fit line indicates a very slight
positive correlation between cost and requests, but it is clear that many other latent factors
besides cost of production affect a dataset’s popularity. Finally, the table in Figure 3 lists
the cost per dataset request for each of the top providers. We can see that the cost per
request varies by an order of magnitude.

On one level, it is not surprising that the relationship between the cost of data production
and the resulting demand for it is weak at best. What drives researcher interest is how
the data can be leveraged, not the person-hours required to collect the data in the first
place. Nonetheless, the implications for funding cybersecurity research data production are
significant. Ideally, program managers should (and assuredly do) consider the potential
demand for a dataset when deciding whether to support an effort financially. But perhaps
more weight should be given to the anticipated requests per unit cost in order to maximize
the impact of limited budgetary resources. To do so would also require more work estimating
the demand of datasets in advance. To an extent, the regressions in Section 4.1 can help
identify dataset categories that are in higher demand, but more work is needed to test
whether such retrospective analysis is predictive of future demand.
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5 Discussion and concluding remarks

In this paper we have undertaken two interconnected objectives. First, we articulated the
benefits of making data broadly available to cybersecurity research: advancing scientific un-
derstanding, providing infrastructure to enable research, improving parity by lowering access
costs and broadening availability, and bolstering operational support. Despite these bene-
fits, access to data remains a nontrivial impediment to cybersecurity research. Therefore,
we discussed barriers that inhibit broader access: legal and ethical risks, costs of operat-
ing infrastructure, and uncertainties, asymmetries and mismatches related to the value such
data can provide. We also considered available incentives to promote data sharing, finding
them to be lacking at present. We reviewed existing models for supporting research datasets,
from student internships to government-facilitated sharing and suggested that the economics
of sharing data for research requires appropriate investment not unlike that of other social
goods. It is hoped that the readers are left with a better understanding of the value of
cybersecurity data in research, how it works today, and what needs to change in order to
improve the situation moving forward.

Our second objective has been to empirically investigate the sharing that has taken place
on IMPACT, a long-running platform that has uniquely facilitated free access to cybersecu-
rity research data. Controlling for the time available on IMPACT, we have found that the
dataset’s age is negatively correlated with requests. This makes sense given that researchers
may prefer more recent data for their efforts. We also found that the restrictions placed on
access to data affect how often they are requested, but in unexpected ways. For example,
permitting commercial use of the data is negatively correlated with utilization, and quasi-
restricted datasets are requested more often than unrestricted ones. These may reflect either
a perception (or the reality) that datasets placing modest restrictions are more likely to be
useful. Note that when we do move to the restricted category that introduces significant
additional costs and verification, approved requests fall.

We also find that datasets that are made available on an ongoing basis are requested more
often. Ongoing availability can be thought of as a proxy for current relevance and longitudinal
cohesiveness, two properties valued by researchers. Additionally, ongoing datasets are more
likely to be relevant to operational defense, which comprises around 6% of IMPACT requests.

We also find that there is considerable variation among the types of datasets. Twenty
percent of the variance in requests can be explained by the type of data offered and whether
or not it is made available on an ongoing basis. Difficult to collect, topically relevant, and
potentially sensitive data such as attacks are requested more often, while more general and
less sensitive data such as network topology are requested less often.

We also investigated the value created by data shared on IMPACT in two ways. First,
we looked at what the requesters themselves said they intended to do with the data. We
identified five categories of use: technology evaluation, technology development, data anal-
ysis, operational defense, and education. Data analysis was the most common intended
use, followed by technology development and evaluation. Strikingly, when asked, 60% of
requesters said they used the data requested and 90% of those said they used it in the way
they originally intended. This suggests that the IMPACT users are highly sophisticated in
their understanding of their research data needs. Most significantly, 72% of surveyed re-
questers stated that they would not have collected the datasets themselves if they could not
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have obtained it through IMPACT. This highlights the value of investing in research data
infrastructure and underscores how much research may not be conducted when data access
is limited.

This motivates the second approach to valuing data shared on IMPACT, by quantifying
value in terms of the costs avoided by data recipients. We obtained annual provisioning
costs from data providers. Matching this to requests, we estimate that the value created
since program inception in 2006 is $663 million. Digging deeper into the costs uncovers two
surprising insights. First, the normalized cost per request varies widely, by one order of
magnitude. Second, there is little if any relationship between the cost of data provisioning
and its resulting demand.

How do the findings for the case of IMPACT compare to the benefits, barriers and incen-
tives identified? IMPACT has realized each of the benefits described, from enabling scientific
advances to understanding to improving data access (at least among eligible participants).
Under IMPACT, standardized legal agreements have been accepted by providers, and expe-
rience has shown little difficulty in sharing restricted datasets. Furthermore, requesters have
seldom objected to the terms outlined in agreements. So it seems that for the data shared,
legal barriers can be overcome. Of course, we cannot say much about the datasets not shared
on IMPACT due to perceived legal issues. The direct financial costs can absolutely be a bar-
rier, but these costs have been addressed by government funding for data providers. The
fact that 72% of those asked said they would not have directly collected the data themselves
if not for IMPACT suggests that direct financial costs are in fact a significant barrier.

Discrepancies in dataset popularity reflects challenges due to uncertainty over dataset
value, as well as value asymmetries between data provider and requester. Simply put, re-
searchers do not always create and share data that requesters want. IMPACT is a platform
serving a two-sided market of data consumers and producers. Each makes independent de-
cisions, and so it is inevitable that there can be mismatches. This also is indicative of the
lack of collective dialog and agreement about cybersecurity data needs.

On the one hand, we should be encouraged by the success of the IMPACT Program:
thousands of users, year-over-year increases in account and user requests, and hundreds of
technical papers published using data hosted by the platform. On the other hand, there are
reasons to be concerned: the lack of a comparable data sharing platform for cybersecurity
research, as well as the present market immaturity in valuing data. It is reasonable to con-
clude that investment in research data infrastructure is an essential requirement for assuring
the availability of data for cybersecurity R&D. Failure to support data as a social good will
exacerbate an existing cybersecurity challenge: the individual and collective risk and harms
that can cascade from shared and interdependent systems whose exposure is only knowable
when individual stakeholders collaborate.
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